import sklearn.metrics as metrics import matplotlib.pyplot as plt def plot_roc(y_test,preds,edge,extension=''): fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) plt.title('ROC Curve') plt.plot(fpr, tpr, label = " ".join(edge)+ " " +'AUC = %0.2f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() plt.savefig('metrics/aucroc'+extension+'.svg', format = 'svg', dpi=1200) plt.clf() print("AUC:", roc_auc) return fpr,tpr, roc_auc