Commit cd9227e2 authored by Andrea's avatar Andrea

Files and code update

parent 2598ebc8
#! /usr/bin/env python
"""
# ---------------------------------------------------------------------------
# functions_proximity.py
# File with all the functions that I have used to calculate the distance
# and the proximity between diseases and drugs and between the pathologies
#included in three groups of conditions: neuro-neuro, neuro-noneuro and
#noneuro-noneuro.
#
#
# ----------------------------------------------------------------------------
"""
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import networkx as nx
from scipy.stats import norm
from itertools import combinations
from tqdm import tqdm
import re
from itertools import product
from statannotations.Annotator import Annotator
# =================================================================================
def genes_dis(enf, file):
"""
This function creates a list with the genes associated with the disease "enf" in the dis_gen file
"""
genes=[]
for i, dis in enumerate(file["cui"]):
if dis == enf:
gen = file["gene_id"][i]
genes.append(gen)
return genes
# =================================================================================
def pro_gen_dict(gene_list, file):
"""
This function creates a dictionary from the list of genes associated with the disease with:
key: protein associated with each gene in the gen_pro file
value: gene related to the key protein in the gen_pro file
"""
result_dict = {}
for i, gen in enumerate(file["gene_id"]):
# Looping through gen_pro, which relates genes and proteins.
# I'm storing the position of the gene (i) and the gene id (gen).
if gen in gene_list:
# Searching each gene in gen_pro within the corresponding gene list of each disease.
prot = file["protein_id"][i]
# If that gene is in the gene list of each disease, I find the associated protein at the same position.
result_dict[prot] = gen
# Adding to each disease's dictionary the protein as key and the related gene as value.
return result_dict
# =================================================================================
def gen_pro_PPI(dict1, file):
"""
From a dictionary with the relationships between proteins and genes associated with each of our diseases,
this function retains the prot:gen relationship from the dictionary only if such prot appears in the PPI network of the pro_pro file.
key: proteins appearing in the PPI network
value: genes related to the key protein
"""
result_dict = {}
for prot in dict1.keys():
# Iterating over all proteins in the general prot:gen dictionary.
if prot in file["prA"].tolist() or prot in file["prB"].tolist():
# Selecting proteins that appear in the PPI network.
result_dict[prot] = dict1[prot]
# Adding to the PPI prot:gen dictionary only the prot:gen relationships for proteins that are in the PPI.
return result_dict
# =================================================================================
def lcc(SG):
"""
This function gives us the LCC of the proteins from the PPI network associated with a disease from a subgraph
formed only with the proteins associated with the disease.
"""
lcc = max(nx.connected_components(SG), key=len)
# Calculating the LCC (module comprising the largest number of proteins associated with a disease).
# Our goal is to obtain the number of genes that are part of the LCC of the disease:
# The number of proteins from the disease in the LCC is the same number as the genes in the LCC
# (because we have extracted the list of proteins from the dictionary where they form a tuple with their associated genes).
return lcc
# =================================================================================
def nodes_by_degree(G):
"""
This function returns a dictionary where we will obtain the degrees as keys and, in the values, all the nodes of the network that contain that degree.
"""
degree_dict = {}
for node in G.nodes():
degree = G.degree(node)
if degree not in degree_dict:
degree_dict[degree] = []
degree_dict[degree].append(node)
return degree_dict
# =================================================================================
def degrees_list(G):
"""
This function returns a list with the nodes and another list with their degrees.
"""
nodes = list(G.nodes())
degrees = list(dict(G.degree()).values())
return nodes, degrees
# =================================================================================
def targets(drug_list, arch):
"""
Input data: list of drugs treating a disease (drug_list) and a file with drug-target relationships (arch).
This function allows us to obtain a DataFrame with drugs in the "Drugs" column and their targets in the "Targets" column.
"""
targets_total = []
# List to store targets for each drug separated by commas
drugs = []
# List to store drugs found in the 'arch' file
for drug1 in drug_list:
# Iterate over each drug in the drug list
targets = []
# Empty list to store targets for each drug
for i, drug2 in enumerate(arch["dru"]):
# Iterate over drugs in the 'arch' file, keeping track of the drug (drug2) and its row (i) in the drug column
if drug1 == drug2:
# If a drug for a disease is found in the drug-target file
targets.append(arch["pro"][i])
# Add its target to the targets list, which will be in the same row (i) in the target column
if len(targets) > 0:
# Check if the targets list is not empty
drugs.append(drug1)
# Add the drug to the list of drugs, so only drugs appearing in the 'arch' file are stored
targets_total.append(targets)
# Add the list of targets for that drug to the list of targets for all drugs
data = {"Drugs": drugs, "Targets": targets_total}
# Combine the data and classify them into Drugs and Targets
df = pd.DataFrame(data)
# Create a DataFrame with the results
return
# =================================================================================
def targets_dict(drug_list, arch):
"""
Input data: list of drugs treating a disease (drug_list) and a file with drug-target relationships (arch).
This function allows us to obtain a dictionary with drugs as keys and their targets as values.
"""
drug_target_dict = {}
# Dictionary to store drugs and their associated targets
for drug1 in drug_list:
# Iterate over each drug in the drug list
targets = []
# Empty list to store targets for each drug
for i, drug2 in enumerate(arch["dru"]):
# Iterate over drugs in the 'arch' file, keeping track of the drug (drug2) and its row (i) in the drug column
if drug1 == drug2:
# If a drug for a disease is found in the drug-target file
targets.append(arch["pro"][i])
# Add its target to the targets list, which will be in the same row (i) in the target column
if targets:
# Check if the targets list is not empty
drug_target_dict[drug1] = targets
# Add the drug and its list of targets to the dictionary
return drug_target_dict
# =================================================================================
def calculate_random_drug_target(num_iterations, drug_target_dict, PPI):
"""
This function performs the random selection of targets for each drug.
:param num_iterations: Number of random iterations
:param drug_target_dict: Dictionary with drugs as keys and their list of targets as values
:param PPI: Protein-protein interaction network
:return: Dictionary with drugs as keys and lists of 1000 random targets as values
"""
results = {drug: [] for drug in drug_target_dict.keys()} # Initialize results dictionary with empty lists
group_nodes_by_degree = nodes_by_degree(PPI) # Group nodes by their degree
for drug, target_list in tqdm(drug_target_dict.items(), total=len(drug_target_dict)): # for each drug
drug_random_targets = [] # To store the lists of random targets
for _ in range(num_iterations): # Create lists of random targets
drug_targets = []
for target in target_list: # for each target in the target list
if target in PPI.nodes():
degree_target = PPI.degree(target) # calculate its degree
available_targets = group_nodes_by_degree.get(degree_target,
[]) # choose proteins from the PPI with the same degree
if available_targets:
random_target = np.random.choice(
available_targets) # randomly select a target with the same degree
drug_targets.append(random_target)
drug_random_targets.append(drug_targets) # Add the list of random targets
results[drug].append(drug_random_targets) # Store the lists of random targets in the results
return results
# =================================================================================
def calculate_dc_drug(target_list, dist_matrix, disease_module_proteins, PPI):
"""
Input data: list of targets of the drug (target_list), proteins of the disease module (disease_module_proteins),
matrix file with distances between all nodes of the PPI (dist_matrix), PPI network (PPI).
This function returns the closest measure (dc) of a drug and a disease.
"""
targets_in_ppi = set(target_list) & set(PPI.nodes())
# List of targets of the drug that are also in the PPI network
targets_in_disease_module = set(targets_in_ppi) & set(disease_module_proteins)
# List of targets of the drug that are also part of the disease module
if not targets_in_ppi:
return np.nan
distances_disease_target = dist_matrix.loc[list(targets_in_ppi), list(disease_module_proteins)].values
# Generate a matrix with the shortest path lengths (SPLs) between all drug targets and all proteins in the disease module according to the distance file
if np.isnan(distances_disease_target).all():
return np.nan # No path between an drug target and the disease
elif len(targets_in_disease_module) == len(targets_in_ppi):
# If all drug targets are part of the disease module
return 0
# The dc value will be 0
else:
non_empty_rows = ~np.isnan(distances_disease_target).all(axis=1)
return np.nanmean(np.nanmin(distances_disease_target[non_empty_rows], axis=1))
# Otherwise, calculate the mean of the minimum SPLs of targets that have a path to the disease module (the mean of the minimum values of each row of the matrix)
# =================================================================================
def proximity(df, arch_dist, prots_enf, PPI):
"""
Input data: DataFrame (df) with "Drugs" and their "Targets"; file with distances between all nodes of the network (arch_dist);
list of proteins related to a disease (prots_enf); and PPI network (PPI).
Function that allows us to obtain a DataFrame with the proximity values (dc) for a list of drugs and a disease.
"""
dc_total = [] # List to store the dc value of all drugs
diseases = [] # List to add whether the drug belongs to a specific disease
for i, drug in enumerate(df["Drugs"]): # For each drug in the drugs and targets DataFrame, I keep the row (i)
targets_list = df["Targets"][i] # Get the list of targets for that drug, which will be in the same row as the drug but in the targets column
dc_total.append(calculate_dc_drug(targets_list, arch_dist, prots_enf, PPI))
data = {'Drugs': list(df["Drugs"]), 'dc': dc_total} # Save the relationship between the list of drugs and the list of dcs
result_table = pd.DataFrame(data) # Convert the results into a DataFrame
return result_table
# =================================================================================
def proximity_random(df, arch_dist, prots_enf, PPI, num_iterations, df_results):
"""
Input data: DataFrame (df) with "Drugs" and their "Targets", file with distances between all nodes of the network (arch_dist),
list of proteins related to a disease (prots_enf), PPI network (PPI), and the number of iterations (num_iterations)
to calculate the dc (num_iterations), DataFrame (df_results) with the results of random target modules iterations for each drug.
This function allows us to obtain a DataFrame with the average proximity values (dc) calculated from:
- 1000 random modules of proteins with the same number of proteins and the same degree distribution as the disease module.
- 1000 random target modules with the same number of proteins and the same degree distribution as each drug in the Drugs and Targets DataFrame.
"""
group_nodes_degree = nodes_by_degree(PPI) # Group nodes by their degree
# Initialize a matrix with null values that has the same number of rows as the total number of drugs in the DataFrame
# and the same number of columns as the number of iterations
proximity_matrix = np.full((len(df["Drugs"]), num_iterations), None, dtype=object)
for i in range(num_iterations): # For each iteration
# Random disease module
random_prots = set() # Create a set of random proteins
for prot in prots_enf: # For each protein in the disease module
degree_prot = PPI.degree(prot) # Calculate its degree
available_prots = group_nodes_degree[degree_prot] # Choose proteins from the PPI with the same degree
random_prots.add(np.random.choice(available_prots)) # Choose the same number of nodes as the disease module, taken from the total list of PPI proteins randomly
# Random target module
random_targets = {} # Create a dictionary to store random targets for each drug
for j, drug in enumerate(df["Drugs"]): # For each drug in the DataFrame
random_target = df_results.iloc[j, i] # Get the random target corresponding to this iteration for this drug
random_targets[drug] = random_target # Store the random target in the dictionary
# Calculate the dc of each drug with the random disease module and the random target
drug_dc_total = calculate_dc_drug(random_target, arch_dist, random_prots, PPI)
proximity_matrix[j, i] = drug_dc_total # Add the dc of each drug (in row j) in the column of the matrix corresponding to the iteration (i)
drug_mean_proximity = [] # List to add the mean of dc after 1000 iterations for each drug
deviation = [] # List to add the deviation of dc after 1000 iterations for each drug
for row in proximity_matrix: # For each row (for each drug)
if all(x is np.nan for x in row): # If the entire row is None
drug_mean_proximity.append(np.nan) # Add None to the drug_mean_proximity list
deviation.append(np.nan) # Add None to the deviation list
else:
drug_mean_proximity.append(np.nanmean(row)) # Add the mean of that row
deviation.append(np.nanstd(row)) # Standard deviation
data = {'Drugs': list(df["Drugs"]), 'dc_mean': drug_mean_proximity, 'dc_std' : deviation}
result_table = pd.DataFrame(data)
return result_table
# =================================================================================
def proximity_random_modules(df, arch_dist, random_modules_noneuro, target_random_module, PPI, num_iterations):
"""
Input data:
- DataFrame (df) with "Drugs" and their "Targets"
- Dictionary (random_modules_noneuro) with disease_id as keys and values composed of 1000 lists of random proteins of their module
- Dictionary (target_random_module) with drug_id as keys and values composed of 1000 lists of random targets of the corresponding drug
- File with distances between all nodes of the network (arch_dist)
- PPI network (PPI)
- Number of iterations (num_iterations) to calculate the dc
This function calculates the average proximity values (dc) between random disease modules and random drug target modules.
"""
# Initialize a matrix with null values that has the same number of rows as the total number of drugs in the DataFrame
# and the same number of columns as the number of iterations
proximity_matrix = np.full((len(df["Drugs"]), num_iterations), np.nan, dtype=float)
for i in range(0, num_iterations): # For each iteration
for j, row in df.iterrows():
# Select the random disease module for this iteration
disease_id = row["ID"] # Assuming a single disease per df, otherwise, adjust accordingly
drug_id = row['Drugs']
# Get the random disease module and random target module for this iteration
random_prots = set(random_modules_noneuro[disease_id][i]) #
random_target = target_random_module[drug_id][0][i]
# random_target_list = [item[0] for item in random_target]
# Random target module
# Calculate the dc of each drug with the random disease module and the random target
drug_dc_total = calculate_dc_drug(random_target, arch_dist, random_prots, PPI)
proximity_matrix[j, i] = drug_dc_total # Store the dc value in the matrix
drug_mean_proximity = np.nanmean(proximity_matrix,
axis=1) # List to add the mean of dc after num_iterations for each drug
deviation = np.nanstd(proximity_matrix,
axis=1) # List to add the deviation of dc after num_iterations for each drug
# Prepare the result as a DataFrame
data = {'Drugs': list(df["Drugs"]), 'dc_mean': drug_mean_proximity, 'dc_std': deviation}
result_table = pd.DataFrame(data)
return result_table
# =================================================================================
def calculate_random_drug_target_modules(num_iterations, df, PPI):
results = {}
group_nodes_by_degree = nodes_by_degree(PPI) # Group nodes by their degree
for i in range(num_iterations): # for each iteration
iteration_results = {}
for j, drug in enumerate(df["Drugs"]): # for each drug, keep its row (j)
target_list = df["Targets"][j] # get the list of targets for that drug
target_list_PPI = set(target_list) & set(PPI.nodes()) # get the drug's targets that are in the PPI
drug_targets = []
for target in target_list_PPI: # for each target in the target list
degree_target = PPI.degree(target) # calculate its degree
available_targets = group_nodes_by_degree[degree_target] # choose proteins from the PPI with the same degree
random_target = np.random.choice(available_targets) # same number of nodes as the disease module, taken from the total list of PPI proteins randomly
drug_targets.append(random_target)
iteration_results[drug] = drug_targets
results[i] = iteration_results
df_results = pd.DataFrame(results)
return df_results
# =================================================================================
def determine_treatment(row, dis_dru_the):
disease = row['ID']
drug = row['Drugs']
treatments = dis_dru_the[(dis_dru_the['dis'] == disease) & (dis_dru_the['dru'] == drug)]
treatment = 'yes' if treatments.shape[0] > 0 else 'unknown'
return treatment
# =================================================================================
def rep_prox_dis_drug(df_combined):
"""
This function represents in a boxplot the distribution of proximity to a disease and
the distribution of its z-score for the group of drugs used to treat the disease
and the group of drugs not used for its treatment (unknown).
Input:
1. df_combined: DataFrame combined with drugs, their observed proximity, their average random proximity,
the standard deviation of random proximity, their z-score, a column indicating the disease, and another column indicating if the drug
is used for the treatment of the disease in the same row.
"""
# Combine the two datasets into a single subplot
fig, axes = plt.subplots(1, 2, figsize=(16, 6)) # Create a subplot with 1 row and 2 columns
# Plot the boxplot with both proximity distributions
sns.boxplot(x='Dataset', y='Closest distance', data=df_combined, hue='Treatment', ax=axes[0], palette={'yes': '#FF7A7A', 'unknown': '#79C4FF'}, dodge=True, medianprops=dict(linewidth=2))
axes[0].set_ylabel('Closest distance ($\mathregular{d_c}$)', fontsize=12)
axes[0].set_xlabel('')
for label in axes[0].get_xticklabels():
label.set_fontsize(12)
axes[0].set_xticks([0,1],['Neuro', 'No Neuro'])
axes[0].legend(loc='upper left', bbox_to_anchor=(1, 1), fontsize=12)
# Plot the boxplot with both proximity distributions
sns.boxplot(x='Dataset', y='Dc_zscore', data=df_combined, hue='Treatment', ax=axes[1], palette={'yes': '#FF7A7A', 'unknown': '#79C4FF'}, dodge=True, medianprops=dict(linewidth=2))
axes[1].set_ylabel('Proximity [z-score ($\mathregular{d_c}$)]', fontsize=12)
axes[1].set_xlabel('')
for label in axes[1].get_xticklabels():
label.set_fontsize(12)
axes[1].set_xticks([0,1],['Neuro', 'No Neuro'])
axes[1].legend(loc='upper left', bbox_to_anchor=(1, 1), fontsize=12)
plt.tight_layout() # Adjust the layout of the subplot to avoid overlap
plt.show()
# =================================================================================
def rep_prox_dis_dis(df_combined):
"""
This function represents in a boxplot the distribution of the closest distance to a disease and
the distribution of its z-score for the group of drugs used to treat the disease
and the group of drugs not used for its treatment (unknown).
Input:
1. df_combined: DataFrame combined with drugs, their observed proximity, their average random proximity,
the standard deviation of random proximity, their z-score, a column indicating the disease, and another column indicating if the drug
is used for the treatment of the disease in the same row.
"""
# Define custom colors
colors = ['dodgerblue','steelblue', 'skyblue']
# Combine the two datasets into a single subplot
fig, axes = plt.subplots(1, 2, figsize=(14, 6)) # Create a subplot with 1 row and 2 columns
# Plot the boxplot with both proximity distributions for closest distance
sns.boxplot(x='dataset', y='Closest distance', data=df_combined, palette=colors, ax=axes[0], dodge=False, medianprops=dict(linewidth=2))
axes[0].set_ylabel('Closest distance ($\mathregular{d_c}$)', fontsize=12)
axes[0].set_xlabel('')
axes[0].set_xticklabels(['Neuro - Neuro', 'Neuro - No neuro', 'No neuro - No neuro'])
# Plot the boxplot with both proximity distributions for z-score
sns.boxplot(x='dataset', y='Dc_zscore', data=df_combined, palette=colors, ax=axes[1], dodge=False, medianprops=dict(linewidth=2))
axes[1].set_ylabel('Proximity [z-score ($\mathregular{d_c}$)]', fontsize=12)
axes[1].set_xlabel('')
axes[1].set_xticklabels(['Neuro - Neuro', 'Neuro - No neuro', 'No neuro - No neuro'])
plt.tight_layout() # Adjust the layout of the subplot to avoid overlap
plt.show()
# =================================================================================
def calculate_dc_dis(lcc_A, dist_matrix, lcc_B, PPI):
"""
Input data: list of proteins in disease A LCC (lcc_A), proteins of the disease module of disease B (lcc_B),
matrix file with distances between all nodes of the PPI (dist_matrix), PPI network (PPI).
This function returns the closest measure (dc) of two disease modules in the interactome.
"""
distances_disease_disease = dist_matrix.loc[list(lcc_A), list(lcc_B)].values
# Generate a matrix with the shortest path lengths (SPLs) between all proteins in the disease module of A and B according to the distance file
non_empty_rows = ~np.isnan(distances_disease_disease).all(axis=1)
# Keep rows that are not empty, i.e., remove proteins of the disease module A that have no path to any protein in the disease module B
if np.isnan(distances_disease_disease).all():
# If the previous matrix is empty
return np.nan
# There is no path between any protein of the diseases
else:
return np.nanmean(np.nanmin(distances_disease_disease[non_empty_rows], axis=1))
# Otherwise, calculate the mean of the minimum SPLs of targets that have a path to the disease module (the mean of the minimum values of each row of the matrix)
# =================================================================================
def proximity_dis(dict_dis, df, arch_dist, prots_dis, PPI):
"""
Input data: Dictionary (dict_dis) with neurological disease and their proteins in its lcc; dataframe (df) with
all neurological disease cui, file with distances between all nodes of the network (arch_dist);
list of proteins related to a disease (prots_dis); and PPI network (PPI).
Function that allows us to obtain a DataFrame with the proximity values (dc) for a list of drugs and a disease.
"""
dc_total = [] # List to store the dc value
for i, dis in enumerate(df["cui"]): # For each disease in the disease and LCC DataFrame, I keep the row (i)
lcc_list = dict_dis[dis] # Get the list of targets for that drug, which will be in the same row as the drug but in the targets column
dc_total.append(calculate_dc_dis(lcc_list, arch_dist, prots_dis, PPI))
data = {'Disease B': df["cui"], 'dc': dc_total} # Save the relationship between the list of drugs and the list of dcs
result_table = pd.DataFrame(data) # Convert the results into a DataFrame
return result_table
# =================================================================================
def proximity_random_dis(dis, drug, dict_targets, dict_dis, arch_dist, PPI):
"""
Input data: DataFrame (df) with "Drugs" and their "Targets", file with distances between all nodes of the network (arch_dist),
list of proteins related to a disease (prots_enf), PPI network (PPI), and the number of iterations (num_iterations)
to calculate the dc (num_iterations), DataFrame (df_results) with the results of random target modules iterations for each drug.
This function allows us to obtain a DataFrame with the average proximity values (dc) calculated from:
- 1000 random modules of proteins with the same number of proteins and the same degree distribution as the disease module.
- 1000 random target modules with the same number of proteins and the same degree distribution as each drug in the Drugs and Targets DataFrame.
"""
# Initialize a matrix with null values that has the same number of rows as the total number of drugs in the DataFrame
# and the same number of columns as the number of iterations
proximity_matrix = np.full((1, 1000), None, dtype=object)
# dict of disease
dict_random_dis = dict_dis[dis]
# dict of drugs
dict_random_drug = dict_targets[drug]
# Random disease module
for index in range(len(dict_random_dis)):
random_lcc = dict_random_dis[index]
random_targets = dict_random_drug[index]
# Calculate the dc of each drug with the random disease module and the random target
drug_dc_total = calculate_dc_dis(random_targets, arch_dist, random_lcc, PPI)
proximity_matrix[0, index] = drug_dc_total # Add the dc of each drug (in row j) in the column of the matrix corresponding to the iteration (i)
drug_mean_proximity = [] # List to add the mean of dc after 1000 iterations for each drug
deviation = [] # List to add the deviation of dc after 1000 iterations for each drug
for row in proximity_matrix: # For each row (for each drug)
if all(x is np.nan for x in row): # If the entire row is None
drug_mean_proximity.append(np.nan) # Add None to the drug_mean_proximity list
deviation.append(np.nan) # Add None to the deviation list
else:
drug_mean_proximity.append(np.nanmean(row)) # Add the mean of that row
deviation.append(np.nanstd(row)) # Standard deviation
data = {'Disease B': disB, 'dc_mean': drug_mean_proximity, 'dc_std' : deviation}
result_table = pd.DataFrame(data)
return result_table
# =================================================================================
def generate_log_bins(graph, num_bins=10):
"""
This function generates logarithmic bins to group nodes of a graph based on
the degree distribution of the nodes.
Input:
1. graph: The graph whose nodes' degrees are to be binned.
2. num_bins: Number of bins to be obtained.
Returns:
A numpy array of logarithmically spaced bins.
"""
degrees = [degree for _, degree in graph.degree()]
min_degree = max(min(degrees), 1) # Para evitar log(0)
max_degree = max(degrees)
return np.logspace(np.log10(min_degree), np.log10(max_degree), num_bins)
# =================================================================================
def group_nodes_by_bins(graph, log_bins):
"""
This function groups nodes of a graph in logarithmic bins based on its degree.
Input:
1.graph
2. log_bins: logarithmic bins
"""
nodes_bins = {}
for node, degree in graph.degree():
bin_index = np.digitize(degree, log_bins) - 1 # Ajustar índice para Python (basado en 0)
nodes_bins.setdefault(bin_index, []).append(node)
return nodes_bins
# =================================================================================
def random_subset_generator(prot_dict, graph_ppi, num_iterations, file_path):
"""
This function generates random subsets of proteins in the disease module
of each of the analyzed pathologues
Input:
1.prot_dict: dictionary with the proteins in the disease module of each disease
2. graph_ppi: interactome
3. num_iterations: number of iterations
"""
# Generation of logarithmic bins
num_bins = 10
bin_edges = generate_log_bins(graph_ppi, num_bins)
# Group nodes in logarithmic bins
group_nodes_bins = group_nodes_by_bins(graph_ppi, bin_edges)
results_dict = {disease: [] for disease in prot_dict.keys()} # dict with random proteins for each disease
for dis in tqdm(list(prot_dict.keys())):
prots = prot_dict[dis]
for _ in range(num_iterations): # For each iterations
results = [] # list to append proteins for each disease
for prot in prots:
# degree of the node
degree_node = graph_ppi.degree(prot)
# bin of the node based on its degree
bin_index = np.digitize(degree_node, bin_edges) - 1
# nodes of the same bin
available_nodes = group_nodes_bins.get(bin_index, [])
if available_nodes:
random_node = np.random.choice(available_nodes) #choose randomly a node from available nodes
if len(available_nodes) == 1 and random_node == prot:
pass
else:
while random_node == prot:
random_node = np.random.choice(available_nodes)
results.append(random_node)
results_dict[dis].append(results)
# Append the new results to the JSON file
with open(file_path, 'w') as file:
json.dump(results_dict, file, indent=4)
return results_dict
# =================================================================================
def rep_prox_dis_dis(df_combined):
"""
This function represents in a boxplot the distribution of the closest distance to a disease and
the distribution of its z-score for the group of drugs used to treat the disease
and the group of drugs not used for its treatment (unknown).
Input:
1. df_combined: DataFrame combined with drugs, their observed proximity, their average random proximity,
the standard deviation of random proximity, their z-score, a column indicating the disease, and another column indicating if the drug
is used for the treatment of the disease in the same row.
"""
# Define custom colors
colors = ['steelblue','dodgerblue', 'skyblue']
# Combine the two datasets into a single subplot
fig, axes = plt.subplots(1, 2, figsize=(14, 6)) # Create a subplot with 1 row and 2 columns
# Plot the boxplot with both proximity distributions for closest distance
sns.boxplot(x='dataset', y='Closest distance', data=df_combined, palette=colors, ax=axes[0], dodge=False, medianprops=dict(linewidth=2))
axes[0].set_ylabel('Closest distance ($\mathregular{d_c}$)', fontsize=12)
axes[0].set_xlabel('')
axes[0].set_xticklabels(['Neuro - Neuro', 'Neuro - No neuro', 'No neuro - No neuro'])
# Plot the boxplot with both proximity distributions for z-score
sns.boxplot(x='dataset', y='Dc_zscore', data=df_combined, palette=colors, ax=axes[1], dodge=False, medianprops=dict(linewidth=2))
axes[1].set_ylabel('Proximity [z-score ($\mathregular{d_c}$)]', fontsize=12)
axes[1].set_xlabel('')
axes[1].set_xticklabels(['Neuro - Neuro', 'Neuro - No neuro', 'No neuro - No neuro'])
plt.tight_layout() # Adjust the layout of the subplot to avoid overlap
plt.show()
# =================================================================================
......@@ -5,7 +5,7 @@
"source": [
"# Integrating scRNA-seq data with PPI networks to study cell type-specific expression patterns in Alzheimer\n",
"\n",
"This study aims to construct cell type-specific PPI networks, analyze differentially expressed genes (DEGs), and evaluate how gene expression patterns vary across cell types in Alzheimer."
"This study aims toanalyze differentially expressed genes (DEGs), integrate the expression values in the PPI network and evaluate how gene expression patterns vary across cell types in Alzheimer."
],
"metadata": {
"collapsed": false,
......@@ -29,6 +29,7 @@
},
"source": [
"import scanpy as sc\n",
"import sys\n",
"import pandas as pd\n",
"import networkx as nx\n",
"import seaborn as sns\n",
......@@ -41,14 +42,9 @@
"import numpy as np\n",
"from scipy.stats import norm\n",
"from matplotlib.patches import Rectangle\n",
"from adjustText import adjust_text\n",
"from scipy.stats import zscore\n",
"import random\n",
"import glob\n",
"import gseapy as gp\n",
"import os\n",
"import json\n",
"\n",
"sys.path.append('functions/')\n",
"import functions_proximity"
],
"outputs": [],
......@@ -64,7 +60,9 @@
"source": [
"## 1. Load data\n",
"\n",
"The original dataset includes cells from multiple conditions (Normal, Alzheimer's, FTD, PSP). For this analysis, we are only interested in comparing Normal vs Alzheimer's, so these two conditions are filtered out."
"The original dataset includes cells from multiple conditions (Normal, Alzheimer's, FTD, PSP). For this analysis, we are only interested in comparing Normal vs Alzheimer's, so these two conditions are filtered out.\n",
"\n",
"These dataset comes from CellXGene platform, and its available at: https://cellxgene.cziscience.com/collections/c53573b2-eff4-4c5e-9ad0-b24d422dfd9b"
],
"id": "48bc73ea77a550de"
},
......@@ -433,9 +431,7 @@
"\n",
"Scanpy, when running sc.tl.rank_genes_groups(), automatically prioritises adata.raw if it exists. In this case, we saved the raw array in adata.raw to begin with (which is correct), but Scanpy is using that raw array instead of the normalised, log-transformed .X array.\n",
"\n",
"\n",
"\n",
"**sc.tl.rank_genes_groups te da los genes más diferencialmente expresados entre los grupos comparados. El signo de logfoldchanges indica si el gen está más expresado en el grupo de interés o en el grupo de referencia. Si comparas \"normal\" vs \"Alzheimer\", un gen sobreexpresado en normal tendrá un logFC positivo para \"normal\" y un logFC negativo para \"Alzheimer\". Lo mismo al revés. El set de genes DEGs es el mismo, solo cambia el signo según qué grupo tomes como referencia.**"
"Files **degs_{cell_type}_total.csv** stores all differentially expressed genes found per each cell type, identified by the ENSEMBL ID."
],
"metadata": {
"collapsed": false,
......@@ -605,7 +601,7 @@
"\n",
" print(f'{len(degs_disease_filtered)} DEGs found for {type} for Alzheimer disease')\n",
"\n",
" degs_disease_filtered.to_csv(f'CellXGene/cross-dementia/complete/data/degs_{type}_total.csv', index=False)"
" degs_disease_filtered.to_csv(f'../data/complete/degs_{type}_total.csv', index=False)"
],
"metadata": {
"collapsed": false,
......@@ -621,7 +617,9 @@
"\n",
"### 4.1. Gene-protein mapping\n",
"\n",
"In this case, scRNA-seq data uses ENSEMBL ID to identify genes, and our mapping file uses Entrez ID. First we perform a step in order to transform the identifiers using NCBI API.\n"
"In this case, scRNA-seq data uses ENSEMBL ID to identify genes, and our mapping file uses Entrez ID. First we perform a step in order to transform the identifiers using NCBI API.\n",
"\n",
"Files **degs_{cell_type}_mapped.csv** stores all the differentially expressed genes in each cell type, identified by Protein Accession Number, Gene Entrez ID, gene symbol, and ENSEMBL ID.\n"
],
"metadata": {
"collapsed": false,
......@@ -635,8 +633,8 @@
"execution_count": 148,
"outputs": [],
"source": [
"gen = pd.read_csv('CellXGene/gen.tsv', sep = '\\t')\n",
"gen_pro = pd.read_csv('CellXGene/gen_pro.tsv', sep = '\\t')"
"gen = pd.read_csv('../data/disnet/gen.tsv', sep = '\\t')\n",
"gen_pro = pd.read_csv('../data/disnet/gen_pro.tsv', sep = '\\t')"
],
"metadata": {
"collapsed": false,
......@@ -690,8 +688,6 @@
" \"\"\"\n",
" symbol_to_entrez = dict(zip(gen_file['gene_symbol'], gen_file['gene_id']))\n",
"\n",
" # Mapear los Gene Symbols a Entrez IDs\n",
" #entrez_ids = {ensembl_id: symbol_to_entrez.get(gene_symbol, None) for ensembl_id, gene_symbol in gene_symbols.items()}\n",
" entrez_ids = {}\n",
" for ensembl_id, gene_symbol in gene_symbols.items():\n",
" entrez_ids[ensembl_id] = (gene_symbol, symbol_to_entrez.get(gene_symbol, None))\n",
......@@ -705,33 +701,6 @@
}
}
},
{
"cell_type": "code",
"execution_count": 151,
"outputs": [
{
"data": {
"text/plain": "{'pericyte': AnnData object with n_obs × n_vars = 925 × 28215\n obs: 'organism_ontology_term_id', 'tissue_ontology_term_id', 'assay_ontology_term_id', 'disease_ontology_term_id', 'cell_type_ontology_term_id', 'self_reported_ethnicity_ontology_term_id', 'development_stage_ontology_term_id', 'sex_ontology_term_id', 'donor_id', 'suspension_type', 'ct_subcluster', 'library_id', 'tissue_type', 'is_primary_data', 'cell_type', 'assay', 'disease', 'organism', 'sex', 'tissue', 'self_reported_ethnicity', 'development_stage', 'observation_joinid', 'n_genes'\n var: 'vst.mean', 'vst.variance', 'vst.variance.expected', 'vst.variance.standardized', 'vst.variable', 'feature_is_filtered', 'feature_name', 'feature_reference', 'feature_biotype', 'feature_length', 'feature_type', 'n_cells'\n uns: 'citation', 'log1p', 'schema_reference', 'schema_version', 'title'\n obsm: 'X_pca', 'X_tsne', 'X_umap'}"
},
"execution_count": 151,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sample_type = 'pericyte'\n",
"\n",
"# Obtén el valor correspondiente a esa key\n",
"data_for_sample_type = {sample_type: data_per_type[sample_type]}\n",
"data_for_sample_type"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 152,
......@@ -860,11 +829,9 @@
}
],
"source": [
"#for type, adata_type in data_per_type.items():\n",
"for type, adata_type in tqdm(data_for_sample_type.items(), desc=f'Mapping DEGs for {sample_type}...'):\n",
"\n",
"for type, adata_type in data_per_type.items():\n",
" # Load DEGs for the cellular type\n",
" degs_disease_filtered = pd.read_csv(f'CellXGene/cross-dementia/complete/data/degs_{type}_total.csv')\n",
" degs_disease_filtered = pd.read_csv(f'../data/complete/degs_{type}_total.csv')\n",
"\n",
" # Obtain ENSEMBL IDs from the DEGs\n",
" ensembl_ids_disease = degs_disease_filtered['names'].tolist()\n",
......@@ -884,7 +851,7 @@
" column_order = ['gene_id', 'gene_symbol', 'names', 'logfoldchanges', 'pvals', 'pvals_adj', 'scores']\n",
" degs_disease_filtered = degs_disease_filtered[column_order]\n",
"\n",
" degs_disease_filtered.to_csv(f'CellXGene/cross-dementia/complete/data/degs_{type}_mapped.csv', index=False)"
" degs_disease_filtered.to_csv(f'../data/complete/degs_{type}_mapped.csv', index=False)"
],
"metadata": {
"collapsed": false,
......@@ -893,6 +860,18 @@
}
}
},
{
"cell_type": "markdown",
"source": [
"#### Add Protein Accession Number"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 162,
......@@ -912,6 +891,21 @@
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"gene_to_protein = dict(zip(gen_pro['gene_id'], gen_pro['protein_id']))\n",
"keys = ['astrocyte', 'glutamatergic neuron', 'oligodendrocyte precursor cell', 'oligodendrocyte', 'inhibitory interneuron', 'microglial cell']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 164,
......@@ -925,10 +919,6 @@
}
],
"source": [
"gene_to_protein = dict(zip(gen_pro['gene_id'], gen_pro['protein_id']))\n",
"# keys = ['astrocyte', 'glutamatergic neuron', 'oligodendrocyte precursor cell', 'oligodendrocyte', 'inhibitory interneuron', 'microglial cell']\n",
"keys = ['pericyte']\n",
"\n",
"for type in keys:\n",
" print(type)\n",
" mapped_file_path = f'CellXGene/cross-dementia/complete/data/degs_{type}_mapped.csv'\n",
......@@ -946,13 +936,9 @@
"source": [
"### 4.2. Cell type-specific PPI construction and integration of DEGs expression values\n",
"\n",
"Values for logfoldchange, p-value and p-value_adj for each differentially expressed gene is going to keep stored as metadata in each node protein of the network. In this networks, all DEGs detected in the differential expression analysis are included\n",
"\n",
"**Las PPI específicas de tipo celular y condición (sana/enferma) van a ser iguales en estructura (mismos nodos y edges) porque usas el mismo set de DEGs, solo que cambia el contexto de up/down-regulation. Se está filtrando el interactoma general (pro_pro.tsv) para quedarte con las interacciones entre DEGs.**\n",
"\n",
"Si los mismos genes aparecen como DEGs en ambas condiciones (solo cambia el signo del logFC), el set de proteínas mapeadas será el mismo.\n",
"Eso implica que la topología (estructura) de la red será igual entre sano y enfermo.\n",
"\n",
"Problema: No estás capturando cambios estructurales reales entre las redes de condiciones sanas y enfermas. Solo podrías distinguirlas después (en análisis como enrichment o modularidad) considerando el estado up/down de los nodos, pero no en la conectividad."
"**Important: there will be cases in which one gene encode more than one protein.**"
],
"metadata": {
"collapsed": false,
......@@ -966,25 +952,7 @@
"execution_count": 221,
"outputs": [],
"source": [
"gen_pro = pd.read_csv(\"CellXGene/gen_pro.tsv\", sep='\\t')\n",
"pro_pro = pd.read_csv('CellXGene/pro_pro.tsv', sep = '\\t')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 222,
"outputs": [],
"source": [
"sample_type = 'astrocyte'\n",
"\n",
"# Obtén el valor correspondiente a esa key\n",
"data_for_sample_type = {sample_type: data_per_type[sample_type]}"
"pro_pro = pd.read_csv(\"../data/disnet/pro_pro.tsv\", sep = '\\t')"
],
"metadata": {
"collapsed": false,
......@@ -1000,37 +968,22 @@
"source": [
"def build_ppi_with_expression(cell_type, gen_pro, pro_pro):\n",
" \"\"\"\n",
" Construye la red PPI específica de un tipo celular, filtrada por DEGs,\n",
" e integra los valores de expresión diferencial directamente en los nodos.\n",
"\n",
" Parámetros:\n",
" - cell_type: str, nombre del tipo celular.\n",
" - gen_pro: DataFrame, mapeo gene_id → protein_id.\n",
" - pro_pro: DataFrame, interacciones proteína-proteína.\n",
"\n",
" Output:\n",
" - G: Grafo NetworkX con expresión diferencial integrada.\n",
" Constructs the cell type-specific PPI network, filtered by DEGs, and integrates the differential expression values directly at the nodes.\n",
" \"\"\"\n",
" # Cargar los DEGs para este tipo celular\n",
" degs = pd.read_csv(f\"CellXGene/cross-dementia/complete/data/degs_{cell_type}_mapped.csv\")\n",
"\n",
" # Mapear genes DEGs a proteínas (usando Entrez IDs)\n",
" degs = degs.merge(gen_pro, on=\"gene_id\", how=\"left\")\n",
"\n",
" # Lista de proteínas DEGs\n",
" proteins_degs_disease = degs[\"protein_id\"].dropna().unique()\n",
"\n",
" # Filtrar la red PPI para solo conservar interacciones entre proteínas DEGs y eliminar self-interactions\n",
" # Filter the PPI network to retain only interactions between DEG proteins and remove self-interactions\n",
" ppi_filtered_disease = pro_pro[\n",
" (pro_pro[\"prA\"].isin(proteins_degs_disease)) &\n",
" (pro_pro[\"prB\"].isin(proteins_degs_disease)) &\n",
" (pro_pro[\"prA\"] != pro_pro[\"prB\"])\n",
" ]\n",
"\n",
" # Construir la red PPI\n",
" G = nx.from_pandas_edgelist(ppi_filtered_disease, \"prA\", \"prB\")\n",
"\n",
" # Agregar la expresión diferencial a los nodos de la red\n",
" # Adding the differential expression to the nodes of the network\n",
" for _, row in degs.iterrows():\n",
" if row[\"protein_id\"] in G:\n",
" G.nodes[row[\"protein_id\"]][\"gene_id\"] = row[\"gene_id\"]\n",
......@@ -1039,9 +992,7 @@
" G.nodes[row[\"protein_id\"]][\"pval\"] = row[\"pvals\"]\n",
" G.nodes[row[\"protein_id\"]][\"pval_adj\"] = row[\"pvals_adj\"]\n",
"\n",
" # Guardar la red en un único archivo con expresión integrada\n",
" output_path = f\"CellXGene/cross-dementia/complete/graphs/{cell_type}_network.graphml\"\n",
" nx.write_graphml(G, output_path)\n",
" nx.write_graphml(G, f\"../data/complete/graphs/{cell_type}_network.graphml\")\n",
"\n",
" return G"
],
......@@ -1066,7 +1017,7 @@
],
"source": [
"cell_networks = {\n",
" cell: build_ppi_with_expression(cell, gen_pro, pro_pro)\n",
" cell: build_ppi_with_expression(cell, pro_pro)\n",
" for cell in tqdm(data_per_type.keys(), desc=\"Building cell type-specific PPIs with expression values...\")\n",
"}"
],
......@@ -1109,9 +1060,9 @@
"execution_count": 10,
"outputs": [],
"source": [
"dis_gen = pd.read_csv('CellXGene/dis_gen.tsv', sep = '\\t')\n",
"gen_pro = pd.read_csv('CellXGene/gen_pro.tsv', sep = '\\t')\n",
"pro_pro = pd.read_csv('CellXGene/pro_pro.tsv', sep = '\\t')"
"dis_gen = pd.read_csv('../data/disnet/dis_gen.tsv', sep = '\\t')\n",
"gen_pro = pd.read_csv('../data/disnet/gen_pro.tsv', sep = '\\t')\n",
"pro_pro = pd.read_csv('../data/disnet/pro_pro.tsv', sep = '\\t')"
],
"metadata": {
"collapsed": false,
......@@ -1172,19 +1123,22 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 1,
"outputs": [
{
"data": {
"text/plain": "{'P52209',\n 'O43189',\n 'Q9NZQ7',\n 'Q9NZV6',\n 'P51843',\n 'Q16795',\n 'Q9HCE0',\n 'P35638',\n 'P04406',\n 'O15427',\n 'P03891',\n 'Q9ULV8',\n 'P35232',\n 'P00813',\n 'Q9UIK4',\n 'P63244',\n 'O75689',\n 'O15105',\n 'P51688',\n 'Q9BXY0',\n 'Q9BYF1',\n 'Q53EL6',\n 'P24387',\n 'P42768',\n 'P15529',\n 'P60228',\n 'Q9UHC9',\n 'Q9P2Y5',\n 'P12004',\n 'Q6ZW49',\n 'Q4V9L6',\n 'P49716',\n 'P04179',\n 'Q9Y2A7',\n 'Q13200',\n 'Q9NV58',\n 'O94813',\n 'Q05086',\n 'P12314',\n 'Q8N5C8',\n 'P08311',\n 'O95452',\n 'P78556',\n 'O15379',\n 'P25942',\n 'P46937',\n 'P16520',\n 'P60983',\n 'P02794',\n 'Q5SNT2',\n 'Q9UBW5',\n 'O14578',\n 'Q13133',\n 'Q92847',\n 'Q9GZX9',\n 'P26599',\n 'O15121',\n 'Q9Y5N1',\n 'Q9UMD9',\n 'P20138',\n 'Q15027',\n 'Q9NTU7',\n 'O75716',\n 'O14595',\n 'Q9H6U6',\n 'P22033',\n 'O14734',\n 'Q8IXL6',\n 'P48147',\n 'P46734',\n 'P35354',\n 'Q14573',\n 'P24863',\n 'P05112',\n 'Q9UKI9',\n 'P04062',\n 'P04439',\n 'Q9Y3D2',\n 'P23945',\n 'Q9Y4C0',\n 'P38936',\n 'P10145',\n 'Q8IYK4',\n 'Q86TM6',\n 'Q9NXA8',\n 'Q9Y6H1',\n 'Q02246',\n 'Q9NZC7',\n 'P63220',\n 'Q9UNU6',\n 'Q9UJY1',\n 'Q9Y485',\n 'P15502',\n 'O94907',\n 'Q9C0B1',\n 'O00499',\n 'Q9H190',\n 'Q9NP56',\n 'P68400',\n 'O75914',\n 'P42356',\n 'P33681',\n 'P12644',\n 'Q96DT6',\n 'P01860',\n 'Q07820',\n 'P60484',\n 'Q8WXG6',\n 'O43184',\n 'P84103',\n 'Q16548',\n 'Q9BYT8',\n 'P03905',\n 'O00418',\n 'Q6IN85',\n 'P39880',\n 'Q8TDQ7',\n 'O60895',\n 'Q7Z698',\n 'P10071',\n 'P01008',\n 'Q8IVL1',\n 'O75475',\n 'Q9UQB3',\n 'Q9Y6C9',\n 'P36955',\n 'Q92575',\n 'Q86UG4',\n 'Q9ULV1',\n 'P11712',\n 'Q96EY1',\n 'Q99700',\n 'Q9Y2C9',\n 'O15287',\n 'P49281',\n 'P22307',\n 'P51587',\n 'Q13393',\n 'P19429',\n 'P68036',\n 'Q13488',\n 'O43474',\n 'P49768',\n 'Q92570',\n 'Q8NA29',\n 'Q5EBL2',\n 'Q13619',\n 'Q92731',\n 'Q92993',\n 'P00749',\n 'O14874',\n 'Q9UNQ0',\n 'P00747',\n 'Q15276',\n 'P19875',\n 'P54253',\n 'P03886',\n 'P08294',\n 'Q9UMY4',\n 'P19419',\n 'Q9P2B7',\n 'Q96I99',\n 'O60493',\n 'Q5TCY1',\n 'P49675',\n 'Q9BYI3',\n 'Q05655',\n 'Q9NR12',\n 'P19367',\n 'Q8WTV0',\n 'Q8WWX9',\n 'P55786',\n 'Q86VK4',\n 'O14773',\n 'Q13867',\n 'Q9UEE9',\n 'Q9H2A3',\n 'P41182',\n 'P29372',\n 'A6NDG6',\n 'Q12774',\n 'Q6IQ55',\n 'Q9NQ75',\n 'P42892',\n 'P21709',\n 'Q01130',\n 'Q8NF50',\n 'P08172',\n 'P01185',\n 'Q9HC10',\n 'P15498',\n 'Q9UIF7',\n 'P19652',\n 'Q8NDV7',\n 'P04141',\n 'Q96B96',\n 'P56159',\n 'O60814',\n 'P15391',\n 'P34810',\n 'Q92673',\n 'Q9Y5X9',\n 'Q6UWF3',\n 'O14746',\n 'Q9UIC8',\n 'P28222',\n 'Q08722',\n 'Q9UPY5',\n 'Q6XR72',\n 'Q96QV1',\n 'O00148',\n 'Q16775',\n 'O75473',\n 'Q92542',\n 'Q5VWX1',\n 'Q9Y520',\n 'P46089',\n 'Q13510',\n 'Q92915',\n 'P78504',\n 'Q96I59',\n 'Q15762',\n 'O15540',\n 'Q14190',\n 'P45983',\n 'P60953',\n 'O96020',\n 'Q96KG7',\n 'Q9NRW4',\n 'P55317',\n 'P31930',\n 'P27797',\n 'P62760',\n 'P49760',\n 'Q15818',\n 'Q30154',\n 'P14410',\n 'O14756',\n 'P11226',\n 'P04626',\n 'Q6H8Q1',\n 'Q9Y6X6',\n 'O43464',\n 'Q8N998',\n 'O14744',\n 'Q99720',\n 'Q99259',\n 'P15153',\n 'P04049',\n 'P05106',\n 'P0DMV8',\n 'P00750',\n 'O60229',\n 'P61086',\n 'Q4LDR2',\n 'P55008',\n 'O95988',\n 'P10321',\n 'O75923',\n 'P20648',\n 'O60290',\n 'P30536',\n 'O00116',\n 'P23141',\n 'Q9UJ68',\n 'P29474',\n 'Q8TF40',\n 'P11245',\n 'Q01362',\n 'P48730',\n 'P35610',\n 'Q15388',\n 'P09543',\n 'O00154',\n 'Q9NZ42',\n 'P20783',\n 'P54257',\n 'P98160',\n 'Q9P1Z0',\n 'Q9NQR4',\n 'P17480',\n 'Q8NBF2',\n 'P00797',\n 'Q14978',\n 'P27695',\n 'P20042',\n 'Q06413',\n 'Q13875',\n 'P49815',\n 'Q6DJT9',\n 'Q96A65',\n 'O15061',\n 'P29323',\n 'O94911',\n 'Q9BXL6',\n 'P04070',\n 'P35372',\n 'P30711',\n 'Q8NI51',\n 'P06748',\n 'Q99962',\n 'Q96LT7',\n 'P36222',\n 'Q8WYA1',\n 'Q16515',\n 'Q9UKV0',\n 'Q8N271',\n 'O00429',\n 'Q99497',\n 'P51790',\n 'Q8IZT6',\n 'Q92876',\n 'P01732',\n 'Q9NZI7',\n 'P29475',\n 'P06307',\n 'P0C7P0',\n 'P24394',\n 'Q8NFT8',\n 'O94906',\n 'P01160',\n 'P32780',\n 'P17252',\n 'P11229',\n 'P18440',\n 'P17752',\n 'O75173',\n 'O95140',\n 'P02652',\n 'P14316',\n 'P43351',\n 'P07550',\n 'Q9H492',\n 'Q9UBL9',\n 'P0CG48',\n 'P21333',\n 'P01034',\n 'P11831',\n 'Q8NDN9',\n 'Q9HB63',\n 'P55212',\n 'Q15369',\n 'P07711',\n 'P22897',\n 'P62380',\n 'P16284',\n 'P27986',\n 'Q13310',\n 'Q9NPH5',\n 'O94827',\n 'P35613',\n 'Q96L34',\n 'Q99726',\n 'P06493',\n 'Q86X60',\n 'P08133',\n 'Q9NRR4',\n 'Q8N6T7',\n 'Q9H3D4',\n 'P02786',\n 'P53985',\n 'Q9UPY6',\n 'Q9HBI1',\n 'P06276',\n 'Q9UKV5',\n 'Q7Z570',\n 'Q96BR1',\n 'P24386',\n 'O15151',\n 'P15559',\n 'Q9NNW7',\n 'P42338',\n 'P61313',\n 'P29597',\n 'P30086',\n 'P41221',\n 'Q9BU40',\n 'O14920',\n 'Q14192',\n 'O43822',\n 'Q13155',\n 'Q16625',\n 'P13569',\n 'Q9Y484',\n 'P32745',\n 'P20226',\n 'O75509',\n 'Q8N9N2',\n 'P60903',\n 'Q15526',\n 'P32320',\n 'Q9UHD2',\n 'Q5T4S7',\n 'P30307',\n 'P20366',\n 'Q9Y4P1',\n 'Q13501',\n 'Q99538',\n 'P48736',\n 'Q01113',\n 'P43403',\n 'P56704',\n 'O75717',\n 'O60784',\n 'P14317',\n 'P56945',\n 'Q08648',\n 'Q86UW7',\n 'P01911',\n 'Q14393',\n 'P62136',\n 'P55072',\n 'P23975',\n 'Q6P1J6',\n 'Q13901',\n 'P56937',\n 'P42345',\n 'O95600',\n 'P08833',\n 'Q6PI77',\n 'P08621',\n 'Q12840',\n 'P09237',\n 'Q13112',\n 'P14859',\n 'P54098',\n 'P14174',\n 'Q9Y5Y6',\n 'Q14694',\n 'Q13148',\n 'P39687',\n 'P52823',\n 'P02766',\n 'Q86TB3',\n 'Q03701',\n 'Q07890',\n 'Q14194',\n 'Q9Y6E2',\n 'Q8WWN8',\n 'P17735',\n 'P21589',\n 'Q5M775',\n 'P01562',\n 'P31327',\n 'P04114',\n 'Q6UWP8',\n 'Q14186',\n 'P15144',\n 'Q13153',\n 'P01138',\n 'Q2M2I8',\n 'P13497',\n 'O75569',\n 'Q6XE24',\n 'P17661',\n 'Q8NF91',\n 'P13501',\n 'Q6ZT89',\n 'Q5T5P2',\n 'Q14126',\n 'P24385',\n 'P13533',\n 'Q12778',\n 'Q8WV28',\n 'P34741',\n 'P01127',\n 'P49841',\n 'P15884',\n 'O00400',\n 'Q9NPF7',\n 'Q12923',\n 'Q7Z417',\n 'Q7L266',\n 'P21399',\n 'Q9UIQ6',\n 'P15169',\n 'Q9H3M7',\n 'Q03001',\n 'P43116',\n 'P05412',\n 'Q13492',\n 'P06681',\n 'Q9UGM6',\n 'P40967',\n 'P42771',\n 'P80075',\n 'P10747',\n 'P11047',\n 'O15068',\n 'P36507',\n 'Q13451',\n 'Q15672',\n 'P17535',\n 'P17275',\n 'O43148',\n 'P30047',\n 'Q05940',\n 'O60885',\n 'Q86U42',\n 'P03372',\n 'Q7RTN6',\n 'P35498',\n 'P27815',\n 'O43490',\n 'Q9UBB9',\n 'P23381',\n 'P02511',\n 'Q7RTS9',\n 'P27708',\n 'P17152',\n 'Q6PUV4',\n 'P36897',\n 'P04233',\n 'P50406',\n 'P52824',\n 'P09622',\n 'P41440',\n 'P54219',\n 'O15553',\n 'Q99828',\n 'P47712',\n 'P28300',\n 'Q9UEY8',\n 'Q9UNK0',\n 'P30519',\n 'P18031',\n 'P14550',\n 'Q16656',\n 'Q96RR4',\n 'P48775',\n 'P25490',\n 'P25440',\n 'Q9H0E2',\n 'P05231',\n 'Q5RKV6',\n 'Q9BXS4',\n 'Q92558',\n 'Q9ULD9',\n 'Q06481',\n 'Q03014',\n 'P07288',\n 'Q96C19',\n 'Q9H2J7',\n 'Q99541',\n 'Q9GZQ8',\n 'P05783',\n 'P61916',\n 'P30740',\n 'Q96M11',\n 'Q9HCJ6',\n 'Q16570',\n 'P32927',\n 'P08913',\n 'P02656',\n 'P07910',\n 'P63165',\n 'P02647',\n 'Q6ZN06',\n 'Q14114',\n 'P14324',\n 'Q53GG5',\n 'Q8NBB4',\n 'P78509',\n 'Q9UJ41',\n 'Q9UBP4',\n 'O43889',\n 'Q9NQ94',\n 'O75955',\n 'P04424',\n 'Q99697',\n 'Q96HJ5',\n 'O75973',\n 'O15244',\n 'P17302',\n 'O00501',\n 'Q8N726',\n 'Q9P0R6',\n 'Q8N165',\n 'P19235',\n 'P06702',\n 'Q9H6X2',\n 'P14373',\n 'Q9UL25',\n 'Q9H8M9',\n 'P00414',\n 'Q8TCG1',\n 'Q9NYA1',\n 'P15036',\n 'Q9BQE4',\n 'Q9UHE5',\n 'Q8TDV0',\n 'P11142',\n 'Q16828',\n 'Q9HDC9',\n 'Q9UKC9',\n 'P41970',\n 'Q92854',\n 'P08473',\n 'P02774',\n 'P17947',\n 'O43914',\n 'O00522',\n 'Q12857',\n 'O96005',\n 'P07585',\n 'Q9NQ66',\n 'Q9H4A6',\n 'Q93086',\n 'Q969K7',\n 'Q99933',\n 'Q9H0Q3',\n 'P05771',\n 'Q8N9Q2',\n 'P55210',\n 'P15289',\n 'P48735',\n 'O15258',\n 'P20749',\n 'P08235',\n 'P10997',\n 'P08582',\n 'P12036',\n 'Q96FF9',\n 'P23284',\n 'Q96TC7',\n 'Q04760',\n 'Q7Z4F1',\n 'Q9NYY3',\n 'O75369',\n 'Q01959',\n 'Q9Y3I1',\n 'Q96BY2',\n 'F8WCM5',\n 'Q8NBJ9',\n 'P21554',\n 'O95433',\n 'Q92736',\n 'Q53H47',\n 'P31371',\n 'Q6UWB1',\n 'Q7Z602',\n 'P36575',\n 'Q13131',\n 'P08236',\n 'P04053',\n 'Q8TD91',\n 'P08247',\n 'Q8TDS5',\n 'Q9Y2W7',\n 'P41567',\n 'P01344',\n 'P04921',\n 'Q16623',\n 'P08138',\n 'Q8NEA6',\n 'P52758',\n 'Q9Y6M4',\n 'P09341',\n 'P25325',\n 'Q9NQC3',\n 'P32004',\n 'Q9ULC6',\n 'O00712',\n 'Q19T08',\n 'P01019',\n 'O60669',\n 'Q8TEW0',\n 'Q15019',\n 'O43497',\n 'O96017',\n 'Q8WTS6',\n 'O00748',\n 'Q9H598',\n 'O60502',\n 'P45877',\n 'Q9Y2G9',\n 'Q12955',\n 'Q07866',\n 'O14990',\n 'Q9UL54',\n 'P17181',\n 'Q969V5',\n 'Q9Y570',\n 'Q9UQQ2',\n 'P35398',\n 'P47914',\n 'P51159',\n 'Q8WXH5',\n 'P34130',\n 'P13473',\n 'Q9BZA7',\n 'Q8IXS6',\n 'O43426',\n 'P35251',\n 'P40121',\n 'P10451',\n 'Q13480',\n 'O94856',\n 'P11021',\n 'O14966',\n 'Q01954',\n 'P09601',\n 'Q96L92',\n 'P15976',\n 'P10636',\n 'P26358',\n 'O94875',\n 'Q9NQB0',\n 'P50458',\n 'P48307',\n 'Q13564',\n 'P26378',\n 'P00533',\n 'O96018',\n 'Q16881',\n 'P10588',\n 'P15692',\n 'Q96IZ0',\n 'Q9NPH3',\n 'Q13087',\n 'Q9UBD9',\n 'Q9UMS4',\n 'P05164',\n 'P08246',\n 'Q13639',\n 'P21281',\n 'P09603',\n 'O43759',\n 'Q99623',\n 'Q16555',\n 'Q9BZS1',\n 'Q16875',\n 'P14902',\n 'P49238',\n 'Q9UI32',\n 'Q08431',\n 'P14618',\n 'P21980',\n 'P06744',\n 'O95631',\n 'P09486',\n 'Q9UBY5',\n 'P07108',\n 'P49767',\n 'P51665',\n 'Q00613',\n 'Q9UBP9',\n 'Q14990',\n 'O15357',\n 'Q9Y287',\n 'Q9UPN3',\n 'P52948',\n 'P25391',\n 'Q02161',\n 'Q9BS16',\n 'P01920',\n 'P14598',\n 'Q13057',\n 'Q96NE9',\n 'P01100',\n 'Q9NZH0',\n 'P31153',\n 'P51572',\n 'Q5SSJ5',\n 'Q16236',\n 'P20742',\n 'P11473',\n 'O95453',\n 'Q99569',\n 'Q08397',\n 'P08151',\n 'O95169',\n 'Q9H1I8',\n 'P16581',\n 'P05019',\n 'P56470',\n 'P46531',\n 'P10070',\n 'P00390',\n 'Q6IBW4',\n 'Q13137',\n 'P78330',\n 'Q2M3C7',\n 'P52757',\n 'P55957',\n 'Q9H4W6',\n 'Q5T124',\n 'P40313',\n 'P49459',\n 'P24821',\n 'Q92599',\n 'Q711Q0',\n 'P02788',\n 'Q9Y2J8',\n 'Q03164',\n 'P28562',\n 'Q9Y6B6',\n 'Q9BQT9',\n 'O14939',\n 'Q5T749',\n 'Q8IV63',\n 'P10082',\n 'O00206',\n 'O60504',\n 'P12081',\n 'P37231',\n 'Q8TD46',\n 'Q9HBM1',\n 'P13798',\n 'P11150',\n 'Q96RU7',\n 'Q12968',\n 'P43115',\n 'Q9UNN5',\n 'Q9UJY5',\n 'P48681',\n 'Q7LC44',\n 'Q9H4A9',\n 'P10599',\n 'O60906',\n 'Q01082',\n 'Q7Z6M3',\n 'P37023',\n 'Q06124',\n 'P28072',\n 'Q14511',\n 'P21246',\n 'P20333',\n 'O14867',\n 'P43004',\n 'P09493',\n 'Q9Y6A2',\n 'P00748',\n 'Q8WUG5',\n 'Q99816',\n 'P06730',\n 'Q9UID3',\n 'P35052',\n 'Q9Y5K2',\n 'Q9NQC7',\n 'P32238',\n 'Q9NRA0',\n 'O75056',\n 'Q5VV43',\n 'P62993',\n 'P19793',\n 'P16035',\n 'Q969R5',\n 'P16885',\n 'P55055',\n 'P52888',\n 'Q8IW41',\n 'Q14CX7',\n 'P32121',\n 'P13693',\n 'P41235',\n 'P01889',\n 'Q96FL8',\n 'Q9UHD9',\n 'P42858',\n 'Q92692',\n 'P04181',\n 'O00233',\n 'Q9H6S1',\n 'P19338',\n 'P06733',\n 'P16278',\n 'P43005',\n 'Q8WZ64',\n 'Q9NZT1',\n 'P10147',\n 'Q14574',\n 'Q5MCW4',\n 'P01282',\n 'Q7Z7J5',\n 'Q99490',\n 'P35222',\n 'P62987',\n 'Q9UQ07',\n 'P00736',\n 'Q9NUM4',\n 'P00918',\n 'Q06187',\n 'Q08554',\n 'P13726',\n 'O76083',\n 'Q16581',\n 'Q9BZ23',\n 'Q14247',\n 'Q8IXJ6',\n 'P61247',\n 'P08519',\n 'O94763',\n 'P35030',\n 'Q9GZY8',\n 'A5PKW4',\n 'P25705',\n 'P21728',\n 'P08174',\n 'P27361',\n 'Q9Y210',\n 'Q9HD89',\n 'Q14643',\n 'P80188',\n 'Q8WXD2',\n 'Q9H0M4',\n 'Q14814',\n 'Q8IWV7',\n 'Q9NPG2',\n 'Q9GZT4',\n 'Q9Y6B2',\n 'Q9Y223',\n 'Q8WXA9',\n 'P20810',\n 'P78423',\n 'O15534',\n 'O43451',\n 'Q15853',\n 'O14863',\n 'Q9Y3A2',\n 'Q9H324',\n 'Q9HDB5',\n 'Q9Y3T9',\n 'O00264',\n 'Q9Y3B3',\n 'Q494W8',\n 'P50222',\n 'Q12908',\n 'O15240',\n 'O95816',\n 'Q7Z7K6',\n 'O15547',\n 'O60861',\n 'Q8TCT8',\n 'O75607',\n 'O95297',\n 'O14672',\n 'P21757',\n 'Q9H3Z4',\n 'P53355',\n 'Q96FA3',\n 'O94880',\n 'P0DN86',\n 'Q9BZV2',\n 'Q5TCZ1',\n 'P00491',\n 'Q04206',\n 'P06400',\n 'Q9Y333',\n 'P78380',\n 'Q9Y4H2',\n 'Q9UPX8',\n 'P19438',\n 'Q9Y617',\n 'Q13326',\n 'Q99678',\n 'P08047',\n 'Q8WZ42',\n 'Q16611',\n 'P06241',\n 'P34932',\n 'Q8IVG9',\n 'P50895',\n 'P07093',\n 'Q9UHM6',\n 'Q9BU23',\n 'P40763',\n 'Q16595',\n 'Q13255',\n 'Q9Y6H5',\n 'Q13404',\n 'Q8WYA6',\n 'P50416',\n 'Q9NQX4',\n 'P41091',\n 'P49840',\n 'P17936',\n 'P34969',\n 'Q8WV60',\n 'P07947',\n 'Q13247',\n 'P49736',\n 'Q562R1',\n 'Q9HAJ7',\n 'P25025',\n 'O00519',\n 'P09936',\n 'Q9NQ88',\n 'Q9NWB1',\n 'Q8TEL6',\n 'Q12800',\n 'Q13765',\n 'P57723',\n 'Q68D20',\n 'P37198',\n 'P78417',\n 'Q6ZVD7',\n 'P56270',\n 'Q9NP64',\n 'Q9UQ90',\n ...}"
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
"ename": "NameError",
"evalue": "name 'lcc_alz' is not defined",
"output_type": "error",
"traceback": [
"\u001B[1;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[1;31mNameError\u001B[0m Traceback (most recent call last)",
"\u001B[1;32m~\\AppData\\Local\\Temp\\ipykernel_1308\\1865455995.py\u001B[0m in \u001B[0;36m<module>\u001B[1;34m\u001B[0m\n\u001B[1;32m----> 1\u001B[1;33m \u001B[0mprint\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mlen\u001B[0m\u001B[1;33m(\u001B[0m\u001B[0mlcc_alz\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m)\u001B[0m\u001B[1;33m\u001B[0m\u001B[1;33m\u001B[0m\u001B[0m\n\u001B[0m",
"\u001B[1;31mNameError\u001B[0m: name 'lcc_alz' is not defined"
]
}
],
"source": [
"lcc_alz"
"print(len(lcc_alz))"
],
"metadata": {
"collapsed": false,
......@@ -1198,7 +1152,11 @@
"source": [
"### 5.2. Alzheimer module proteins filtering\n",
"\n",
"Keep only those proteins which are present in the Alzheimer disease module for subsequent analysis.\n"
"Next step consists on filtering the previously built cell-type-specific network by keeping only those nodes which belong to the general AD module.\n",
"\n",
"**{cell_type}_network-graphml** file store the PPI subgraphs of each cell type built only with those genes beloging to the AD module.\n",
"\n",
"**degs{cell_type}_mapped_filt.csv** files store all the data from the proteins and their corresponding DEGs which are present in the AD module."
],
"metadata": {
"collapsed": false,
......@@ -1214,18 +1172,18 @@
"source": [
"for cell_type in tqdm(cell_types, desc='Processing cell types...'):\n",
"\n",
" # Cargar red PPI específica para este tipo celular\n",
" G = nx.read_graphml(f'CellXGene/cross-dementia/complete/graphs/{cell_type}_network.graphml')\n",
" G = nx.read_graphml(f\"../data/complete/graphs/{cell_type}_network.graphml\")\n",
" ppi_proteins = set(G.nodes())\n",
"\n",
" # Proteínas del módulo de Alzheimer presentes en la PPI de este tipo celular\n",
" # Alzheimer's module proteins present in the PPI of this cell type.\n",
" alz_in_ppi = lcc_alz.intersection(ppi_proteins)\n",
"\n",
" # Built the filtered subgraph with only the proteins resulting form the intersection\n",
" G_alz = G.subgraph(alz_in_ppi).copy()\n",
" nx.write_graphml(G_alz, f'CellXGene/cross-dementia/filtered/graphs/{cell_type}_network.graphml')\n",
" nx.write_graphml(G_alz, f\"../data/filtered/graphs/{cell_type}_network.graphml\")\n",
"\n",
" # Archivo filtrado de mapped genes\n",
" df_complete = pd.read_csv(f'CellXGene/cross-dementia/complete/data/degs_{cell_type}_mapped.csv')\n",
" # Extract all the data for these genes of the intersection in a separate file\n",
" df_complete = pd.read_csv(f\"../data/complete/data/degs_{cell_type}_mapped.csv\")\n",
"\n",
" alz_data = [{\n",
" \"protein_id\": protein,\n",
......@@ -1240,30 +1198,7 @@
" df_filtered = df_filtered.drop(columns=[\"gene_symbol_x\"], errors='ignore')\n",
" df_filtered = df_filtered.rename(columns={\"gene_symbol_y\": \"gene_symbol\"})\n",
"\n",
" df_filtered.to_csv(f'CellXGene/cross-dementia/filtered/data/degs_{cell_type}_mapped.csv', index=False)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 359,
"outputs": [
{
"data": {
"text/plain": "2697"
},
"execution_count": 359,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(lcc_alz)"
" df_filtered.to_csv(f\"../data/filtered/data/degs_{cell_type}_mapped_filt.csv\", index=False)"
],
"metadata": {
"collapsed": false,
......@@ -1362,10 +1297,6 @@
"def group_nodes_by_bins(graph, log_bins):\n",
" \"\"\"\n",
" This function groups nodes of a graph in logarithmic bins based on its degree.\n",
"\n",
" Input:\n",
" 1.graph\n",
" 2. log_bins: logarithmic bins\n",
" \"\"\"\n",
" nodes_bins = {}\n",
" for node, degree in graph.degree():\n",
......@@ -1404,9 +1335,6 @@
"\n",
" if available_nodes:\n",
" random_node = np.random.choice(available_nodes) #choose randomly a node from available nodes\n",
" # if len(available_nodes) == 1 and random_node == prot:\n",
" # pass\n",
" # else:\n",
" while random_node == prot:\n",
" random_node = np.random.choice(available_nodes)\n",
"\n",
......@@ -1415,7 +1343,6 @@
" else:\n",
" iteration_results.append(None)\n",
"\n",
" # results.append(results)\n",
" if any(iteration_results):\n",
" results.append(iteration_results)\n",
"\n",
......@@ -1565,28 +1492,28 @@
"\n",
"for cell_type in tqdm(cell_types, desc=\"Processing cell types...\"):\n",
"\n",
" # Solapamiento DEGs en módulo de Alzheimer: número de proteínas DEGs que están en el módulo de Alzheimer.\n",
" degs_cell_type = pd.read_csv(f'CellXGene/cross-dementia/complete/data/degs_{cell_type}_mapped.csv')\n",
" # Overlapping DEGs in Alzheimer's module: number of DEG proteins that are in the Alzheimer's module.\n",
" degs_cell_type = pd.read_csv(f'../data/complete/data/degs_{cell_type}_mapped.csv')\n",
" degs_total = degs_cell_type.dropna(subset=['gene_id'])['gene_id']\n",
" degs_protein = degs_cell_type.dropna(subset=['protein_id'])['protein_id']\n",
"\n",
" G = nx.read_graphml(f'CellXGene/cross-dementia/complete/graphs/{cell_type}_network.graphml')\n",
" G = nx.read_graphml(f'../data/complete/graphs/{cell_type}_network.graphml')\n",
" ppi_proteins = set(G.nodes())\n",
"\n",
" # Proteínas del módulo de Alzheimer presentes en la PPI de este tipo celular\n",
" # Alzheimer's module proteins present in the PPI of this cell type.\n",
" alz_in_ppi = lcc_alz.intersection(ppi_proteins)\n",
"\n",
" # Calcular el LCC de la red de enfermedad para el tipo celular. Para ello utilizamos los DEGs que se encuentran en el LCC general de la enfermedad\n",
" degs_cell_type_filt = pd.read_csv(f'CellXGene/cross-dementia/filtered/data/degs_{cell_type}_mapped.csv')\n",
" # Calculate the LCC of the disease network for the cell type. For this we use the DEGs found in the overall disease LCC.\n",
" degs_cell_type_filt = pd.read_csv(f'../data/filtered/data/degs_{cell_type}_mapped_filt.csv')\n",
" lcc_cell_type = calculate_lcc_for_cell_type(degs_cell_type_filt['gene_id'], gen_pro, pro_pro, G_ppi)\n",
"\n",
" # Generar 1,000 redes aleatorias\n",
" # Generate 1,000 random networks\n",
" random_networks = random_subset_generator(lcc_cell_type, G_ppi, 1000)\n",
"\n",
" # Calcular el tamaño del LCC para cada red aleatoria\n",
" # Calculate the size of the LCC for each random network\n",
" random_lcc_sizes = [len(calculate_lcc_from_prots(network, pro_pro, G_ppi)) for network in random_networks]\n",
"\n",
" # Calcular estadísticas de los módulos aleatorios\n",
" # Calculate statistics of random modules\n",
" random_lcc_mean = np.mean(random_lcc_sizes)\n",
" random_lcc_std = np.std(random_lcc_sizes)\n",
"\n",
......@@ -1598,13 +1525,11 @@
" plt.title(f\"LCC size distribution in random networks - {cell_type}\")\n",
" plt.legend(loc = 'best')\n",
" plt.tight_layout()\n",
" plt.savefig(f'CellXGene/cross-dementia/plots/significance/random_modules_{cell_type}.svg', format='svg', dpi=1200)\n",
" plt.show()\n",
" plt.savefig(f'../figures/significance/random_modules_{cell_type}.svg', format='svg', dpi=1200)\n",
" # plt.show()\n",
"\n",
" # Agregar la fila correspondiente\n",
" table.append([cell_type, len(degs_total), len(degs_protein), len(alz_in_ppi), len(lcc_cell_type), random_lcc_mean, random_lcc_std])\n",
"\n",
"# Crear el DataFrame de la tabla\n",
"table_df = pd.DataFrame(table, columns=[\"Cell Type\", \"Total DEGs\", \"DEGs mapped to protein\", \"Cell Type proteins in main LCC\", \"Cell Type LCC size\", \"LCC mean\", \"LCC std\"])"
],
"metadata": {
names,scores,logfoldchanges,pvals,pvals_adj
ENSG00000198846,4.811137,1.7838787,1.5007386566395886e-06,0.04234334119708599
This source diff could not be displayed because it is too large. You can view the blob instead.
names,scores,logfoldchanges,pvals,pvals_adj
ENSG00000204389,16.825916,2.4445856,1.576048729127379e-63,4.4468214892329e-59
ENSG00000106211,16.579802,2.3521888,9.755175041694643e-62,1.3762113190070718e-57
ENSG00000080824,13.622513,1.269916,2.9426643130860597e-42,2.7675757864574393e-38
ENSG00000204388,12.839762,2.8006985,9.817635058555169e-38,6.9251143294283525e-34
ENSG00000186352,12.149157,2.2913055,5.7960199919004915e-34,3.2706940814294476e-30
ENSG00000196950,12.073232,1.2146878,1.4627411025709465e-33,6.878540034839876e-30
ENSG00000120694,12.02845,2.1945572,2.518457729204452e-33,1.0151183547071946e-29
ENSG00000065054,9.535691,1.1629804,1.4888966118319355e-21,4.2009217902838064e-18
ENSG00000258667,9.449484,1.2962058,3.405045852665826e-21,8.733942612087845e-18
ENSG00000109906,8.852285,0.9783372,8.574542868857419e-19,2.0160893920401005e-15
ENSG00000073849,8.806369,0.9701311,1.2926482233206135e-18,2.8055438169993162e-15
ENSG00000040341,8.679387,1.0377384,3.9790681800486756e-18,8.01924347857667e-15
ENSG00000148488,8.169529,0.9246422,3.0959633065007277e-16,5.459537793307377e-13
ENSG00000109971,8.140065,1.2835685,3.9506430608342765e-16,6.556905527143477e-13
ENSG00000086061,8.070164,1.1777052,7.020411386739461e-16,1.1004494848714106e-12
ENSG00000128294,7.7468853,1.0768578,9.417404277392481e-15,1.3285603084331443e-11
ENSG00000090060,7.700025,1.0141777,1.3603957287803012e-14,1.7808877709510822e-11
ENSG00000134294,7.697402,0.901904,1.3886064490846643e-14,1.7808877709510822e-11
ENSG00000110958,7.6734996,1.0884552,1.6736600349882587e-14,2.0531442559649443e-11
ENSG00000120129,7.5820246,0.7886909,3.402032513748326e-14,3.999514473975376e-11
ENSG00000128731,7.497748,0.68953896,6.492361526719836e-14,7.045460787553852e-11
ENSG00000132002,7.468956,1.9478366,8.083350849637728e-14,8.447101637871425e-11
ENSG00000105854,7.3613434,0.698899,1.820683134464224e-13,1.834663379961003e-10
ENSG00000064042,7.088535,0.730251,1.3553923176795023e-12,1.318703249769902e-09
ENSG00000110172,6.9788446,1.6922036,2.9761703633908126e-12,2.658975605932487e-09
ENSG00000163762,6.9745007,1.1982391,3.0695870836425474e-12,2.658975605932487e-09
ENSG00000185650,6.9692965,0.83010936,3.1852977527020473e-12,2.658975605932487e-09
ENSG00000105993,6.9680376,0.8854717,3.213928584481676e-12,2.658975605932487e-09
ENSG00000116161,6.964386,2.0156648,3.298392564509553e-12,2.658975605932487e-09
ENSG00000138772,6.9162035,0.8347701,4.639071353182147e-12,3.5376053575684937e-09
ENSG00000096384,6.8795633,0.7063304,6.003626598559218e-12,4.457692749430219e-09
ENSG00000168209,6.851653,1.310385,7.300146644259293e-12,5.2813753222506654e-09
ENSG00000101187,6.8109627,0.6985206,9.694788312834605e-12,6.671669566990936e-09
ENSG00000124440,6.763683,0.8826399,1.3452755271715897e-11,9.037368809320572e-09
ENSG00000004478,6.6613584,1.8447479,2.7130803562768594e-11,1.7011013833855907e-08
ENSG00000196104,6.657497,0.93023896,2.7852979836139173e-11,1.708417013210145e-08
ENSG00000179104,6.4632363,0.87683177,1.0248700075035289e-10,6.024314012856681e-08
ENSG00000055813,6.4498687,0.8229831,1.1194705008992433e-10,6.446093914871867e-08
ENSG00000130303,6.421413,0.8273381,1.3501542060694875e-10,7.618920184850117e-08
ENSG00000144445,6.3147864,0.965733,2.705347094990968e-10,1.4966934957876502e-07
ENSG00000165810,6.3031187,0.7728336,2.9171535100882365e-10,1.5828362747526845e-07
ENSG00000109846,6.260246,1.4574996,3.843712849120227e-10,2.0462331705269284e-07
ENSG00000122884,6.2220526,1.0417746,4.906926873147863e-10,2.5638692912197583e-07
ENSG00000109458,6.18239,0.89539665,6.313816856577873e-10,3.125339344006047e-07
ENSG00000157107,6.078933,0.71860665,1.209849731525254e-09,5.885501754307766e-07
ENSG00000158825,6.017425,1.4935253,1.7721334146178481e-09,8.474702422617387e-07
ENSG00000114416,5.985884,0.9775797,2.1521751950528905e-09,1.0120603854736216e-06
ENSG00000177879,5.944795,0.68246096,2.7680310724879153e-09,1.280327814922074e-06
ENSG00000108219,5.9104,0.71726483,3.412778043488893e-09,1.5284370237625257e-06
ENSG00000119522,5.843457,0.6070564,5.112849055418952e-09,2.219369786133011e-06
ENSG00000102760,5.8371196,0.70875883,5.311101178869054e-09,2.2704957539665203e-06
ENSG00000092531,5.776493,1.1157777,7.62736767167811e-09,3.1965130218635254e-06
ENSG00000112335,5.774814,0.8747631,7.703805971530028e-09,3.1965130218635254e-06
ENSG00000168439,5.750471,1.4755228,8.899504081812222e-09,3.639123299541041e-06
ENSG00000072736,5.696392,0.81817,1.2236922522649622e-08,4.932353842522273e-06
ENSG00000114166,5.686718,1.2426151,1.2950407625098874e-08,5.084299563145958e-06
ENSG00000110841,5.6864033,0.48361278,1.2974289156353322e-08,5.084299563145958e-06
ENSG00000137831,5.6595,0.6353115,1.5181461377559245e-08,5.8677388050388235e-06
ENSG00000116106,5.6517143,0.68536216,1.588552879767913e-08,6.05689452738536e-06
ENSG00000115170,5.561016,0.76350725,2.6820844039822346e-08,9.918148844190546e-06
ENSG00000120071,5.511176,0.57327557,3.564439588321449e-08,1.263896631841255e-05
ENSG00000051108,5.5106726,0.60787183,3.574654684886739e-08,1.263896631841255e-05
ENSG00000153048,5.5046916,0.7996309,3.6981505714751876e-08,1.2881891157305236e-05
ENSG00000158201,5.489792,1.6847259,4.024072171651783e-08,1.380839987902878e-05
ENSG00000108100,5.4881344,0.5054299,4.0620137868488e-08,1.380839987902878e-05
ENSG00000198668,5.3955894,0.56518525,6.829908165889458e-08,2.2941173678639412e-05
ENSG00000159335,5.3904476,1.1373512,7.028235882990508e-08,2.3329608875126726e-05
ENSG00000127483,5.3737435,0.6669579,7.711856693533839e-08,2.5250261187151582e-05
ENSG00000177311,5.357753,0.5880543,8.426348900275939e-08,2.701698116150973e-05
ENSG00000157514,5.3364315,0.8531887,9.479360531537752e-08,3.0051703078352547e-05
ENSG00000112576,5.3302617,0.723589,9.807121609060338e-08,3.074532624440416e-05
ENSG00000053254,5.302687,0.58842254,1.1411030888774237e-07,3.5380465552391766e-05
ENSG00000144381,5.2962656,1.0832922,1.1819477592842111e-07,3.624853916109132e-05
ENSG00000166295,5.2639065,0.8040545,1.4102621668611048e-07,4.2504751797983844e-05
ENSG00000145555,5.263151,0.6503947,1.4160718302358606e-07,4.2504751797983844e-05
ENSG00000167797,5.2370872,1.4763783,1.631305645375552e-07,4.7945092483615834e-05
ENSG00000128849,5.228861,0.57085323,1.705574922346687e-07,4.961113034434203e-05
ENSG00000174059,5.1670175,0.6641704,2.3785910911348308e-07,6.848157922078495e-05
ENSG00000162599,5.1564407,0.5353712,2.51687963931671e-07,7.058683863333302e-05
ENSG00000152601,5.1557064,0.4794592,2.526766153452644e-07,7.058683863333302e-05
ENSG00000117318,5.1523905,0.55833423,2.5718655622074096e-07,7.11423400369432e-05
ENSG00000198722,5.064756,0.6272604,4.0892349794284536e-07,0.00010988358566149888
ENSG00000123636,5.0202675,0.524279,5.159961788229626e-07,0.00013480400171749898
ENSG00000185291,5.005997,1.113968,5.557352539000427e-07,0.00014385385494302482
ENSG00000189079,4.996638,0.66375107,5.833846242874153e-07,0.00014963815612972203
ENSG00000178980,4.975422,0.5671462,6.510572137207462e-07,0.0001654917052714491
ENSG00000172270,4.9587803,0.44951633,7.09370789891078e-07,0.00017712298085643155
ENSG00000122778,4.927974,0.8420002,8.308664760658021e-07,0.00020547730526172274
ENSG00000069869,4.926421,0.6356499,8.374938899556305e-07,0.00020547730526172274
ENSG00000171105,4.865312,0.507943,1.1427639252565434e-06,0.0002755819158214818
ENSG00000115756,4.8434663,0.8872333,1.275933589866958e-06,0.0003020073984209328
ENSG00000104067,4.842144,0.49666807,1.2844546450651051e-06,0.0003020073984209328
ENSG00000178764,4.8331623,0.722384,1.3438097797476473e-06,0.000313352007732065
ENSG00000203709,4.8109603,0.75543875,1.5020699296588011e-06,0.0003445601875229518
ENSG00000156976,4.8023143,0.62618476,1.5684234745415259e-06,0.0003532824952216536
ENSG00000148498,4.8013277,0.5368612,1.5761695881190673e-06,0.0003532824952216536
ENSG00000139514,4.801139,0.49938244,1.5776570759499682e-06,0.0003532824952216536
ENSG00000100380,4.7950115,0.88912725,1.626656620317527e-06,0.000360030186030607
ENSG00000145685,4.794193,0.8516471,1.6333107854658052e-06,0.000360030186030607
ENSG00000157827,4.7775936,0.5601592,1.7740555295647938e-06,0.0003850382828205435
ENSG00000168952,4.761141,0.60786337,1.9250144055189164e-06,0.0004146128355092842
ENSG00000107186,4.752684,0.51546896,2.007339665333259e-06,0.0004265507614578225
ENSG00000170385,4.7523484,0.6936182,2.0106769900368737e-06,0.0004265507614578225
ENSG00000044524,4.744185,0.81330836,2.093475223463926e-06,0.000440356897068637
ENSG00000129538,4.7428837,0.6775751,2.106970799371469e-06,0.000440356897068637
ENSG00000171476,4.7360845,1.171635,2.1788663763704727e-06,0.00045203466771538887
ENSG00000124151,4.724962,0.6670347,2.3015791076108296e-06,0.0004740076972353252
ENSG00000118777,4.7095385,0.5178807,2.482786307609128e-06,0.000507621852675301
ENSG00000148429,4.697199,0.56233466,2.637535906677675e-06,0.0005315576829065042
ENSG00000138640,4.6818166,0.9062407,2.8434370806152466e-06,0.0005689899094294977
ENSG00000105227,4.678837,0.8788701,2.8850699913626332e-06,0.0005732552803260331
ENSG00000178175,4.660454,0.7028817,3.1551318715732983e-06,0.0006225317885065777
ENSG00000148400,4.6523533,0.7782756,3.2816812325586995e-06,0.0006430044165044702
ENSG00000187147,4.648534,0.7185816,3.3430248614747436e-06,0.0006505065273552406
ENSG00000169372,4.6236033,0.7124549,3.7713042096898483e-06,0.0007288174539479388
ENSG00000118785,4.6204557,1.2787293,3.828980729989164e-06,0.0007349298727662876
ENSG00000140396,4.6049266,0.5655906,4.126113588853815e-06,0.000786610100739935
ENSG00000105939,4.6001,0.76270187,4.222881931056682e-06,0.000794324091231762
ENSG00000123243,4.590447,0.6388985,4.422982727942776e-06,0.0008156500501235649
ENSG00000144331,4.587005,0.7204743,4.496495462661199e-06,0.0008204833019914006
ENSG00000152104,4.574372,0.53072923,4.7765044241579935e-06,0.0008639043097924217
ENSG00000157540,4.5727983,0.50807405,4.812537425784263e-06,0.0008648773469331401
ENSG00000171862,4.5651593,0.50814,4.991147273795052e-06,0.0008912988628489076
ENSG00000153944,4.544237,0.47462305,5.513455436196432e-06,0.0009722634070767647
ENSG00000083642,4.5326953,0.5399187,5.823580173500271e-06,0.001020573382579566
ENSG00000111077,4.504407,0.66540366,6.655850705134314e-06,0.0011381504705779678
ENSG00000080503,4.461597,0.49471265,8.135106212408942e-06,0.0013827230227898691
ENSG00000136111,4.4252715,0.43259233,9.632102222025277e-06,0.0016176771678240664
ENSG00000073910,4.4209065,0.5704488,9.82876282819013e-06,0.0016409381254283107
ENSG00000132549,4.418787,0.49256817,9.925634390468133e-06,0.001647363378394461
ENSG00000104365,4.4153037,0.7100136,1.008683306301303e-05,0.0016616038119268576
ENSG00000127922,4.4141493,0.6165204,1.0140791525705017e-05,0.0016616038119268576
ENSG00000079950,4.413142,0.76500136,1.018810772508759e-05,0.0016616038119268576
ENSG00000147316,4.40884,0.59267706,1.0392570974037285e-05,0.0016852091381175977
ENSG00000185305,4.3982215,0.45187223,1.0914152949943715e-05,0.0017527222168222424
ENSG00000120802,4.397844,0.946054,1.0933160026961356e-05,0.0017527222168222424
ENSG00000158195,4.390814,0.50213206,1.129272352083786e-05,0.001800136690058984
ENSG00000160209,4.363302,0.4789892,1.2811386230908993e-05,0.0020307486657589733
ENSG00000150753,4.354845,0.99748135,1.3316111649443877e-05,0.00209896139770424
ENSG00000146376,4.348696,0.91211486,1.3694920729937478e-05,0.0021466788244176994
ENSG00000133639,4.336735,0.67301464,1.4461500859263819e-05,0.002254316280354302
ENSG00000228696,4.3311734,0.99501324,1.4831669556099894e-05,0.002299316244644827
ENSG00000168477,4.3156233,0.7768566,1.591530490194424e-05,0.002440490912001939
ENSG00000175115,4.306117,0.60633004,1.6614508647801627e-05,0.0025339370891768807
ENSG00000099715,4.294848,1.3373245,1.7481302041609847e-05,0.0026455289837167173
ENSG00000120910,4.29233,0.4963462,1.7680804920209658e-05,0.0026455289837167173
ENSG00000221869,4.2916164,0.5255881,1.7737723952519413e-05,0.0026455289837167173
ENSG00000168264,4.260768,0.9768357,2.0372566353156478e-05,0.002966633894336369
ENSG00000163320,4.259803,0.8222251,2.046074915655516e-05,0.002966633894336369
ENSG00000187244,4.259782,0.98403025,2.0462670204352378e-05,0.002966633894336369
ENSG00000074054,4.25464,0.51410544,2.0938537886266118e-05,0.0030141879921479517
ENSG00000103257,4.248429,0.43621567,2.152752228741109e-05,0.00306767192595608
ENSG00000137819,4.243455,0.8418353,2.201044271018023e-05,0.003120726839536358
ENSG00000171552,4.229542,0.5635817,2.3416770692644415e-05,0.003293530316690567
ENSG00000171843,4.227611,0.6141529,2.361854439039666e-05,0.0032989961879952563
ENSG00000162734,4.2186294,0.6969797,2.457917726005569e-05,0.003402048806013288
ENSG00000108256,4.2184615,0.61085945,2.4597482063679277e-05,0.003402048806013288
ENSG00000108239,4.216069,0.6600605,2.485973875413048e-05,0.0034049394609116093
ENSG00000155962,4.2130055,0.8970819,2.5199497512181233e-05,0.0034348010739429636
ENSG00000114439,4.2104454,0.5743025,2.5486788533054238e-05,0.003457258357981372
ENSG00000131374,4.20117,0.4637778,2.65539383495236e-05,0.003584781677185686
ENSG00000164604,4.1999946,0.6321505,2.669213707588746e-05,0.0035862792742674507
ENSG00000100591,4.196637,1.3292919,2.7090769339768005e-05,0.003622587947495518
ENSG00000198130,4.1886415,0.6849432,2.8062925998388465e-05,0.003734884231342125
ENSG00000135655,4.1748123,0.47323006,2.9823192213587693e-05,0.003948404961631866
ENSG00000044574,4.1738677,0.7192146,2.9947143781294325e-05,0.003948404961631866
ENSG00000168874,4.1488533,0.8754416,3.341446365131729e-05,0.004335435812443707
ENSG00000146278,4.148287,0.9210528,3.3497253486185656e-05,0.004335435812443707
ENSG00000117616,4.1424947,0.5013274,3.435480055099994e-05,0.004421353205097499
ENSG00000142168,4.1416974,0.7630747,3.447448892863547e-05,0.004421353205097499
ENSG00000100234,4.1259375,0.47272608,3.692275162133715e-05,0.0046926821486307545
ENSG00000079308,4.1187816,0.50801563,3.8088102959339485e-05,0.00481908441703033
ENSG00000134333,4.109632,0.5848978,3.962902240384812e-05,0.004991664585377566
ENSG00000160447,4.1033783,0.8268803,4.071606101883587e-05,0.005105794051762019
ENSG00000146555,4.0946903,0.8493447,4.227328428625342e-05,0.005245331443727696
ENSG00000099875,4.0945854,0.88101023,4.229243218926093e-05,0.005245331443727696
ENSG00000083535,4.0935574,0.52850866,4.2480517596056476e-05,0.005245331443727696
ENSG00000250722,4.092571,0.91125673,4.266167147380685e-05,0.005245331443727696
ENSG00000196781,4.0920463,0.61892694,4.275832826714053e-05,0.005245331443727696
ENSG00000124570,4.090787,0.48887706,4.29911528986618e-05,0.005251062246907977
ENSG00000151718,4.0890875,0.45048365,4.330737441371184e-05,0.0052668860736331015
ENSG00000164684,4.0859394,0.82172745,4.3898804778163936e-05,0.005315900329681955
ENSG00000142875,4.079203,0.54072803,4.5190307003160476e-05,0.0054489081713426195
ENSG00000118922,4.078028,0.6057101,4.5419275606245935e-05,0.005453212175447783
ENSG00000137575,4.068753,0.4472612,4.72654974065476e-05,0.005639668932156024
ENSG00000173530,4.0661507,0.6231233,4.779608777687531e-05,0.00566624628833839
ENSG00000151929,4.0422482,1.0001198,5.294114941536285e-05,0.00618739309511501
ENSG00000168899,4.041682,0.61286104,5.3069258515606325e-05,0.00618739309511501
ENSG00000177189,4.0375266,0.449293,5.401774058856698e-05,0.006272059879450277
ENSG00000154240,4.031315,0.42696857,5.546567628173033e-05,0.006413787115938611
ENSG00000114861,4.026698,0.39772016,5.656558199275478e-05,0.006514277126226841
ENSG00000110328,4.0237603,0.36494413,5.7276245030810866e-05,0.0065693059087167825
ENSG00000101276,4.0003405,0.6051658,6.325138196577037e-05,0.007187586585165078
ENSG00000122566,3.9976544,0.4176969,6.397324068491536e-05,0.007220019943699548
ENSG00000138434,3.9933734,0.5566872,6.513984295235856e-05,0.007322393103190426
ENSG00000180573,3.9867842,2.2824502,6.697491847669929e-05,0.007498798908016153
ENSG00000152127,3.9694083,0.45315814,7.20513320246897e-05,0.00802720750988559
ENSG00000107263,3.9681072,0.42883807,7.244574626561685e-05,0.00802720750988559
ENSG00000141627,3.9677715,0.46277702,7.254786159917865e-05,0.00802720750988559
ENSG00000164494,3.965715,0.6545544,7.317629481263605e-05,0.008065113898978618
ENSG00000107742,3.9607203,0.4927634,7.472399334884027e-05,0.008203647752286103
ENSG00000123124,3.9451492,0.51859874,7.975027314000246e-05,0.008721526963740966
ENSG00000165416,3.9410572,0.7728168,8.112328695380423e-05,0.008803436697698409
ENSG00000142910,3.9378674,0.64377445,8.220899804401916e-05,0.00886399914725357
ENSG00000173905,3.9375737,0.7066747,8.230968550701523e-05,0.00886399914725357
ENSG00000169288,3.9310892,0.57602817,8.456190225738921e-05,0.009047025498366834
ENSG00000131095,3.9308374,0.697769,8.465053097887096e-05,0.009047025498366834
ENSG00000013441,3.9280672,0.5391716,8.563125798192916e-05,0.009117305448906156
ENSG00000087250,3.9213939,0.810715,8.803819003735719e-05,0.009303361542711733
ENSG00000189283,3.915581,0.50413847,9.018674524632341e-05,0.009494847078824684
ENSG00000143341,3.912748,0.8677938,9.125173760602481e-05,0.009571255674921897
ENSG00000163565,3.9081733,0.4273685,9.299661869150573e-05,0.00971814665326235
ENSG00000112851,3.8991916,0.4215519,9.651440897115211e-05,0.010048538926645968
ENSG00000069702,3.8893285,0.6413307,0.0001005219976024042,0.010422400834848862
ENSG00000182208,3.888552,0.9073005,0.00010084406974707565,0.010422400834848862
ENSG00000251322,3.8836625,0.5881173,0.000102894742544444,0.010572700586715554
ENSG00000156958,3.8819625,0.99392474,0.00010361681078409118,0.010572700586715554
ENSG00000079819,3.8807244,0.61337346,0.00010414576918822151,0.010572700586715554
ENSG00000112531,3.8804307,0.3695819,0.00010427165830665667,0.010572700586715554
ENSG00000115484,3.8789198,0.7378894,0.00010492135971222239,0.010572700586715554
ENSG00000157106,3.8723094,0.4531772,0.00010780898388911196,0.010825019503314211
ENSG00000179981,3.8675036,0.8348372,0.00010995513717907885,0.010972858931446514
ENSG00000158828,3.8668742,0.81410664,0.00011023926029587657,0.010972858931446514
ENSG00000173320,3.8664124,0.59836894,0.00011044805729331241,0.010972858931446514
ENSG00000160953,3.8503587,0.740965,0.00011794492349712738,0.01167654742621561
ENSG00000087460,3.837159,0.40819472,0.00012446587326229275,0.012279037112222342
ENSG00000171681,3.8339064,0.63120764,0.0001261241944482549,0.012399282739921644
ENSG00000152689,3.8321645,0.88317645,0.00012702073845031106,0.012444062970053913
ENSG00000108924,3.8164046,0.72869194,0.0001354104025877998,0.013220084806279486
ENSG00000102786,3.8132777,0.53001446,0.00013713583076207508,0.01334237056879982
ENSG00000133872,3.781674,0.47947785,0.00015577731487190788,0.01500087692529311
ENSG00000120162,3.7726922,0.5342388,0.00016149544452742265,0.015498618936534798
ENSG00000149257,3.7706356,0.59102696,0.00016283224001201955,0.015573937803183497
ENSG00000175029,3.7677817,0.46231577,0.0001647046424809797,0.01569980232297582
ENSG00000121879,3.757541,0.5751339,0.00017159134923354363,0.016301178177186647
ENSG00000113140,3.7525463,0.4426511,0.00017504743973268864,0.016570912600841706
ENSG00000159256,3.751749,0.6664004,0.00017560527618825698,0.016570912600841706
ENSG00000127528,3.7449918,0.45013064,0.00018039976196980402,0.016966597613260068
ENSG00000174804,3.7412143,0.7449679,0.00018313326682526106,0.017166462204235018
ENSG00000143774,3.740081,0.49241373,0.00018396088126635448,0.017186941274603285
ENSG00000183878,3.73878,0.94813335,0.00018491544091135773,0.01721910615615168
ENSG00000153187,3.7313092,0.44455355,0.00019048720456205228,0.017621627792519034
ENSG00000231607,3.7094216,0.3971936,0.0002077332574468901,0.01915422829694119
ENSG00000213853,3.7075958,0.42148763,0.00020923619466621854,0.01922996492673406
ENSG00000088986,3.704679,0.5470854,0.00021165864899184625,0.019389444095145914
ENSG00000100811,3.703126,0.575677,0.00021295901998551807,0.019445432844308712
ENSG00000091879,3.7018669,0.42931625,0.00021401887845963024,0.01947916985722086
ENSG00000182240,3.7010484,0.41578,0.00021471044043418411,0.019479276774438923
ENSG00000054598,3.6864426,0.6879579,0.00022741059007581332,0.020434362417162653
ENSG00000106348,3.6764328,1.0183971,0.00023651817000256852,0.02116168043704338
ENSG00000078674,3.675908,0.4150478,0.00023700482077284094,0.02116168043704338
ENSG00000155508,3.6715012,0.49955553,0.00024112993912364186,0.02139459507035709
ENSG00000185022,3.6699903,1.0687084,0.00024255970429109256,0.021453987638160428
ENSG00000135837,3.6629603,0.47660443,0.0002493172913433668,0.02198277304766592
ENSG00000166228,3.656077,1.2336749,0.0002561044329400789,0.022510861605620956
ENSG00000148180,3.6427934,0.51229924,0.0002696953601689185,0.023631846543993897
ENSG00000164070,3.6339376,1.6046455,0.00027912845079044443,0.024382691142577056
ENSG00000099219,3.6328044,1.2170737,0.00028035760035258667,0.024414474364037757
ENSG00000055208,3.6313775,0.55546296,0.00028191263344183,0.02447435370018841
ENSG00000074416,3.6293628,0.44685656,0.00028412173728593,0.02458104198183017
ENSG00000120616,3.6278307,0.40681827,0.00028581242151697246,0.02458104198183017
ENSG00000067900,3.6270964,0.44965607,0.0002866263622903465,0.02458104198183017
ENSG00000152558,3.6270964,0.40872553,0.0002866263622903465,0.02458104198183017
ENSG00000163468,3.6198564,0.74788505,0.0002947665267639612,0.02520253803831868
ENSG00000183615,3.6168556,1.798167,0.00029820363062925626,0.025419381988533125
ENSG00000266028,3.5911906,0.43057778,0.0003291708804584454,0.027813773793289743
ENSG00000180190,3.5911276,0.486318,0.0003292504145652587,0.027813773793289743
ENSG00000172530,3.5875602,0.98421854,0.0003337868440095808,0.02811282329471738
ENSG00000168785,3.581726,0.40062353,0.0003413314646254062,0.028662700221445937
ENSG00000113851,3.5745492,0.5652619,0.00035083184152570856,0.029286155055171206
ENSG00000122378,3.570373,0.5958726,0.0003564730822634,0.029669286183073247
ENSG00000114315,3.5689251,0.5422504,0.00035844881650207253,0.029745980463546987
ENSG00000168918,3.5638678,0.41735992,0.00036543020458982563,0.030147991878660615
ENSG00000117713,3.560468,0.5402293,0.00037019432056274146,0.0304519905384191
ENSG00000102934,3.5592718,0.66776323,0.0003718843480929191,0.030502083957679397
ENSG00000166598,3.5580127,0.5060826,0.00037367111478597365,0.030559798561409408
ENSG00000082898,3.5553687,0.56719327,0.0003774494779532366,0.030779586764308007
ENSG00000196323,3.5511506,0.8271267,0.0003835508676862609,0.031132883046734366
ENSG00000153201,3.5496187,0.58483577,0.0003857895222649435,0.031132883046734366
ENSG00000130164,3.549241,0.67354864,0.000386343392895195,0.031132883046734366
ENSG00000198399,3.5485904,0.39410216,0.00038729902354789163,0.031132883046734366
ENSG00000146648,3.5357263,0.4316732,0.00040665558537477373,0.032422128239447595
ENSG00000172493,3.5356424,0.37787962,0.00040678480938381885,0.032422128239447595
ENSG00000174373,3.5312777,0.37507218,0.0004135575606856932,0.03286908894294883
ENSG00000181234,3.5264928,0.45668334,0.0004211024553864985,0.033188284298128645
ENSG00000138688,3.523303,0.40931657,0.0004262035869096163,0.03340370612404118
ENSG00000090863,3.516294,0.4372489,0.0004376160187167727,0.03420314672602145
ENSG00000175899,3.5098305,0.37962964,0.0004483922848503911,0.03492389079591321
ENSG00000168497,3.509285,0.43451706,0.0004493132149181817,0.03492389079591321
ENSG00000137710,3.504962,0.41268823,0.00045667246062077333,0.035398388671470105
ENSG00000189058,3.499254,0.7910619,0.00046656189716810987,0.03606587377698142
ENSG00000170606,3.4911957,0.8810992,0.0004808639722918503,0.037069882454138135
ENSG00000080298,3.4866629,0.39419776,0.0004890875419467655,0.03760110353141141
ENSG00000114796,3.4845014,0.65166235,0.0004930549775513678,0.03780311465111914
ENSG00000150991,3.4833262,0.3710061,0.00049522460360052,0.03786656420213732
ENSG00000119950,3.482172,0.570235,0.0004973641487813639,0.037927376913151845
ENSG00000128923,3.4746592,0.6333765,0.0005115026481431825,0.038856564383304516
ENSG00000186314,3.4742396,0.58600366,0.0005123034538574971,0.038856564383304516
ENSG00000231079,3.469287,0.7048974,0.0005218416367838532,0.039417580705788685
ENSG00000143127,3.4689512,0.82517165,0.0005224942471722477,0.039417580705788685
ENSG00000046889,3.4660134,0.37971643,0.0005282371208848457,0.03974456097537579
ENSG00000170558,3.4636838,0.44944078,0.0005328321482503434,0.039983667720434685
ENSG00000196141,3.4617114,0.5235091,0.0005367525303864233,0.040149165447398404
ENSG00000087086,3.4611447,0.37216356,0.0005378835562330886,0.040149165447398404
ENSG00000109762,3.4586055,0.69695085,0.0005429795546802344,0.040422607217157826
ENSG00000164190,3.4555626,0.3754779,0.0005491455702352361,0.040774058589966286
ENSG00000176809,3.4400334,0.7154923,0.0005816421156671475,0.042915144363238414
ENSG00000158321,3.4396138,0.37838995,0.0005825447560205675,0.042915144363238414
ENSG00000065413,3.436571,0.43592003,0.0005891280044029014,0.04328710063601006
ENSG00000115875,3.433759,0.54219055,0.0005952733457394943,0.0436250323377658
ENSG00000157617,3.432059,0.5294588,0.00059901694788644,0.04378565591869405
ENSG00000102547,3.4244206,1.2414241,0.000616112117947754,0.04480310156674196
ENSG00000130584,3.4214826,0.5153787,0.000622807230470966,0.04517353729495708
ENSG00000018408,3.419384,0.35959142,0.0006276308292329463,0.045406676530275844
ENSG00000138439,3.416656,0.91597646,0.000633953473643714,0.0457467960584588
ENSG00000024048,3.4138439,0.43177843,0.0006405326355356217,0.04610364365213665
ENSG00000104964,3.3995948,0.51631445,0.0006748575810173718,0.04820533328710163
ENSG00000153179,3.395251,0.62825567,0.0006856572543494392,0.048853079372397544
ENSG00000132639,-3.3918934,-0.5821821,0.000694114664006321,0.04933109633485729
ENSG00000142937,-3.400623,-0.40824866,0.0006723243892208441,0.04814627574077695
ENSG00000197329,-3.5252757,-0.4476936,0.0004230421753455675,0.03324828684505623
ENSG00000177954,-3.5278358,-0.48117277,0.0004189717149825187,0.03311284856647553
ENSG00000154529,-3.5498285,-0.44181335,0.00038548213709596417,0.031132883046734366
ENSG00000109790,-3.5654626,-0.3548298,0.00036321499754204327,0.030053111893398095
ENSG00000089280,-3.5772772,-0.5443241,0.00034719181711756686,0.029068300059264536
ENSG00000003147,-3.6050618,-0.7620424,0.00031207865504426837,0.026521985699018168
ENSG00000125810,-3.6735578,-0.94288003,0.00023919657161479432,0.021290004000351487
ENSG00000188313,-3.6869044,-0.38180226,0.00022699858037735627,0.020434362417162653
ENSG00000176204,-3.6965156,-0.8454034,0.00021857877814574313,0.01976666738904533
ENSG00000033867,-3.734499,-0.66560316,0.0001880892182157192,0.017457030565646438
ENSG00000133083,-3.7908235,-0.56589335,0.0001501486118063441,0.014508366719575339
ENSG00000182718,-3.797308,-0.5457675,0.00014627600717328498,0.014182740695512838
ENSG00000138166,-3.8793814,-1.2997081,0.0001047224356274865,0.010572700586715554
ENSG00000169715,-3.8818157,-0.4071753,0.0001036794357327623,0.010572700586715554
ENSG00000081041,-3.9231777,-1.5078694,8.738864290544767e-05,0.009269438193899271
ENSG00000150471,-3.9434285,-0.5878513,8.032494481904533e-05,0.00875045682652264
ENSG00000134146,-3.999669,-1.194961,6.343112031565141e-05,0.007187586585165078
ENSG00000108342,-4.0046635,-1.6768352,6.210580723727282e-05,0.00709439413441155
ENSG00000176406,-4.0455427,-0.7504232,5.2202005638889176e-05,0.006136998287921908
ENSG00000132963,-4.0615335,-0.5739482,4.875138306188593e-05,0.005755314950172015
ENSG00000166979,-4.068228,-0.4589933,4.737201973847165e-05,0.005639668932156024
ENSG00000250903,-4.135003,-0.69878036,3.5494975566495394e-05,0.004531632287822026
ENSG00000204525,-4.1613398,-0.41342628,3.163860622378613e-05,0.004132792937982062
ENSG00000154217,-4.1650753,-0.3494779,3.112501352902726e-05,0.00408461514754188
ENSG00000197321,-4.216321,-0.46734482,2.48320080304974e-05,0.0034049394609116093
ENSG00000157557,-4.2533813,-0.36897373,2.1056672822654866e-05,0.0030158072268589194
ENSG00000131389,-4.259341,-1.7631438,2.050305190131462e-05,0.002966633894336369
ENSG00000140988,-4.2643566,-0.4818453,2.0047918901929926e-05,0.0029615289623976587
ENSG00000099860,-4.290651,-0.72020537,1.7815009991358365e-05,0.0026455289837167173
ENSG00000112541,-4.290693,-0.3577918,1.7811643067767957e-05,0.0026455289837167173
ENSG00000078328,-4.320072,-0.68668795,1.5597803964219047e-05,0.0024048745292373796
ENSG00000206503,-4.4310007,-0.38561535,9.379683837862748e-06,0.0015847172424269308
ENSG00000167470,-4.510493,-0.714603,6.467718776519828e-06,0.001112723690728701
ENSG00000081803,-4.517565,-0.31329182,6.255486695149923e-06,0.0010828132337647551
ENSG00000276500,-4.5248885,-1.2906936,6.042728817510742e-06,0.0010524419357164543
ENSG00000166833,-4.5577517,-0.5852035,5.170411369695504e-06,0.0009175041307921928
ENSG00000157554,-4.5865016,-0.27632755,4.50735111850672e-06,0.0008204833019914006
ENSG00000107438,-4.5920205,-1.0100646,4.389749107400742e-06,0.0008148471780612627
ENSG00000261371,-4.59286,-0.27831376,4.372122472039615e-06,0.0008148471780612627
ENSG00000113448,-4.603059,-0.32738,4.1633039627842324e-06,0.0007883732973822626
ENSG00000182871,-4.7020044,-0.8350921,2.5761979098834934e-06,0.0005229311081105235
ENSG00000090339,-4.781623,-1.3582723,1.7388582545100387e-06,0.00038032469496899796
ENSG00000158710,-4.8259015,-0.41822565,1.3937128749638858e-06,0.00032232466202545927
ENSG00000213949,-4.8491955,-0.32965755,1.239633264305624e-06,0.0002964089199354507
ENSG00000112137,-4.8770638,-0.44789243,1.0767664017836306e-06,0.00026190486229590637
ENSG00000144218,-4.9617186,-0.64117604,6.987225023905083e-07,0.00017602192325846602
ENSG00000069020,-5.0259333,-0.5953747,5.009898630001203e-07,0.00013210681293970462
ENSG00000125968,-5.0910087,-0.4664058,3.5616364793107733e-07,9.662651275360911e-05
ENSG00000181826,-5.1373234,-0.51405674,2.786793833385403e-07,7.633921165919335e-05
ENSG00000185774,-5.1568813,-0.7208299,2.510965678422582e-07,7.058683863333302e-05
ENSG00000229807,-5.252868,-0.8111847,1.4974869259374044e-07,4.447536170034091e-05
ENSG00000111640,-5.3720226,-0.41591844,7.785832795612927e-08,2.5250261187151582e-05
ENSG00000105835,-5.559421,-0.43115568,2.7067072869135994e-08,9.918148844190546e-06
ENSG00000171988,-5.580197,-0.26714852,2.402468007172025e-08,9.038084642981159e-06
ENSG00000102317,-5.8835177,-1.9828013,4.016365418954931e-09,1.770652348372084e-06
ENSG00000163638,-5.9296646,-0.5344014,3.035541284321356e-09,1.3814160860826947e-06
ENSG00000115604,-6.194562,-1.2527115,5.844740319520107e-10,2.944809787772497e-07
ENSG00000078401,-6.2066913,-0.97147137,5.411174210734866e-10,2.7759323701069864e-07
ENSG00000047457,-6.6454935,-0.8915112,3.0220265252484246e-11,1.8141803916996662e-08
ENSG00000099622,-6.688912,-1.3474184,2.2483568716129377e-11,1.4417588439217963e-08
ENSG00000164181,-6.71634,-0.31989917,1.8634585404853413e-11,1.2227321562742769e-08
ENSG00000204442,-6.8410554,-0.89804155,7.861183149784273e-12,5.545082064279081e-09
ENSG00000134531,-6.9413652,-1.1543816,3.883290043604373e-12,3.0435285716749276e-09
ENSG00000110799,-7.015716,-0.32937378,2.287744353030953e-12,2.151623564025611e-09
ENSG00000198938,-7.5520997,-0.43639687,4.282961593427725e-14,4.8337504543425304e-11
ENSG00000109046,-8.018183,-0.65108067,1.0732090987230954e-15,1.5937155116037967e-12
ENSG00000198804,-8.313572,-0.5953916,9.286382190910667e-17,1.7467684901102964e-13
ENSG00000137962,-9.707792,-0.5696512,2.793221828362268e-22,8.75675043191571e-19
ENSG00000155850,-9.87219,-1.5587776,5.495114380731733e-23,1.9380581531543233e-19
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
names,scores,logfoldchanges,pvals,pvals_adj
ENSG00000106211,10.203879,1.8847187,1.905079425515209e-24,5.375181599091162e-20
ENSG00000204389,8.499396,2.4507992,1.9057843538792078e-17,1.3442926386175463e-13
ENSG00000169282,7.6771245,1.7665759,1.6269912319993884e-14,7.650926268477125e-11
ENSG00000080824,7.3055577,1.1101086,2.7611934434650644e-13,1.1129581858195256e-09
ENSG00000249307,6.3864245,2.4419992,1.6980927901100702e-10,4.791168807295563e-07
ENSG00000188783,6.2328253,1.1246282,4.5809686471760224e-10,1.0993314842938347e-06
ENSG00000109846,6.1314106,1.5257127,8.710331282157684e-10,1.7554428366148505e-06
ENSG00000125868,6.012273,1.1278157,1.8294016520001416e-09,3.441104507412266e-06
ENSG00000026025,5.7661204,1.1177812,8.111714376110418e-09,1.4304501320122217e-05
ENSG00000109906,5.65449,0.97660965,1.5630948959328988e-08,2.5942777934556905e-05
ENSG00000197956,5.471353,1.3109308,4.466131319079335e-08,7.000660842656857e-05
ENSG00000120129,5.3028617,1.3002188,1.140014122026448e-07,0.00016082749226488114
ENSG00000204388,5.279723,1.9751459,1.2937920573658479e-07,0.00017383020427894
ENSG00000177469,5.132155,1.475945,2.864437535018991e-07,0.00035139176108939485
ENSG00000164188,5.0788627,1.8963917,3.797007747927411e-07,0.0004463857233657163
ENSG00000049323,5.0055094,1.0109398,5.571449857288402e-07,0.0006287938308935691
ENSG00000087460,4.991479,0.93212223,5.991879271728181e-07,0.0006502341294300409
ENSG00000088986,4.8236027,1.2955422,1.4098808553823604e-06,0.0014321528993238334
ENSG00000154556,4.7952952,0.82707316,1.6243543107902054e-06,0.001580384719963643
ENSG00000228696,4.7263727,1.7327657,2.285661449531549e-06,0.0021496645932844215
ENSG00000096384,4.702742,0.86155623,2.5669080707434486e-06,0.0023363003618073037
ENSG00000133687,4.6953573,0.8563625,2.661410584871509e-06,0.002346615614129676
ENSG00000198727,4.66065,0.66950905,3.1521257464290597e-06,0.002695067513196846
ENSG00000137766,4.630373,1.9908507,3.650074265484499e-06,0.00294248129716129
ENSG00000166165,4.5538197,1.0452213,5.268051179078088e-06,0.003766304197864037
ENSG00000172348,4.550989,0.9275901,5.339435332786159e-06,0.003766304197864037
ENSG00000159335,4.518989,1.1981658,6.213558362011248e-06,0.004174179742479699
ENSG00000177697,4.4986815,1.2395262,6.837618769445611e-06,0.004384623035906998
ENSG00000187244,4.4403434,1.1792399,8.981542769837278e-06,0.005491340014446716
ENSG00000198523,4.4371433,2.9352746,9.116054377757362e-06,0.005491340014446716
ENSG00000172216,4.436405,1.105564,9.147367736274876e-06,0.005491340014446716
ENSG00000150054,4.3984976,1.514614,1.0900286953493306e-05,0.0062211624300885105
ENSG00000184347,4.397144,0.9965857,1.0968473774122214e-05,0.0062211624300885105
ENSG00000065882,4.396036,0.81891215,1.1024565709885718e-05,0.0062211624300885105
ENSG00000142279,4.3612056,1.5026994,1.2934784821474805e-05,0.0070970556189187016
ENSG00000120694,4.353698,1.6761034,1.3386021284377312e-05,0.0070970556189187016
ENSG00000137941,4.352713,0.8056885,1.3446301922327701e-05,0.0070970556189187016
ENSG00000115457,4.3504977,1.6023544,1.358288156730852e-05,0.0070970556189187016
ENSG00000035862,4.3319135,1.2674397,1.4781915547329778e-05,0.00746855873693095
ENSG00000077943,4.331298,1.4129341,1.482329573872526e-05,0.00746855873693095
ENSG00000118689,4.312098,0.8544231,1.617127040075925e-05,0.007893088224653035
ENSG00000162599,4.285883,0.6353812,1.820149370055006e-05,0.008704324487474914
ENSG00000119950,4.2803445,0.93443614,1.8660434560560504e-05,0.008775069352103577
ENSG00000107186,4.2404675,0.89345884,2.230545580159591e-05,0.010317187466262763
ENSG00000164684,4.2141294,1.3715477,2.5074354256207306e-05,0.011054264145920143
ENSG00000185046,4.1964064,0.9782406,2.7118346891093846e-05,0.01159309329594262
ENSG00000079691,4.1900063,1.2644056,2.7894655155413113e-05,0.011746980525522104
ENSG00000153048,4.1727757,2.155557,3.0091106379423022e-05,0.012485596566109125
ENSG00000110958,4.1628065,0.8664793,3.1435963398396926e-05,0.012854575467909699
ENSG00000124788,4.1383142,0.712304,3.498666958075107e-05,0.014102126888869878
ENSG00000187955,4.1324067,1.4476955,3.5898440231553435e-05,0.01421156062314216
ENSG00000162998,4.1300683,1.2927861,3.626554544980455e-05,0.01421156062314216
ENSG00000142798,4.124653,1.4249504,3.7129416901106386e-05,0.014350773943352284
ENSG00000124440,4.1175146,1.8042517,3.829803704592784e-05,0.014602420476362891
ENSG00000106034,4.08933,1.2340093,4.326208327231942e-05,0.016061048414848584
ENSG00000122367,4.0578227,1.5193521,4.9532373604588394e-05,0.018150076899395604
ENSG00000206190,4.020407,1.3684849,5.809757941462975e-05,0.021015682092099724
ENSG00000156113,3.9869306,0.960263,6.693356973804249e-05,0.02390545152099834
ENSG00000243927,3.9823768,1.7596824,6.822947604545502e-05,0.02406368333278142
ENSG00000248079,3.9628077,2.2015052,7.407342999545918e-05,0.025802244781751617
ENSG00000022267,3.9251463,1.1099092,8.667699643796073e-05,0.029824286030451976
ENSG00000154380,3.916285,0.9760763,8.992395843480865e-05,0.030568728761905133
ENSG00000101605,3.8772697,1.4294349,0.00010563520327554851,0.03386928705022274
ENSG00000221869,3.8473623,0.70893383,0.00011939636024008529,0.03743075893526674
ENSG00000106624,3.8311162,0.957455,0.00012756323615662705,0.03884523852069285
ENSG00000131171,3.8300085,0.89910865,0.00012813882232022992,0.03884523852069285
ENSG00000145687,3.8257008,0.63722783,0.00013040056419279987,0.03884523852069285
ENSG00000182247,3.8249624,0.69574136,0.0001307920488912217,0.03884523852069285
ENSG00000112137,3.8005934,0.8537658,0.00014435005028238797,0.04242538196580809
ENSG00000198840,3.7976394,0.38057047,0.0001460805815010719,0.042491377392296324
ENSG00000178568,3.7917318,1.1079869,0.00014960041364138994,0.04292680102551837
ENSG00000130176,3.7892704,1.2630347,0.00015109044759217935,0.04292680102551837
ENSG00000131374,3.787547,0.71140087,0.00015214177219747784,0.04292680102551837
ENSG00000182809,3.772778,1.1283969,0.00016143987203558614,0.04390651825756212
ENSG00000133112,3.7721627,0.80236536,0.00016183866378828498,0.04390651825756212
ENSG00000067560,3.7688396,0.7855196,0.00016400820514150236,0.04407134769588085
ENSG00000188846,3.7535782,1.1112844,0.00017432811747928283,0.04640252674224495
ENSG00000104490,3.7442243,1.0537264,0.00018095187522841415,0.04746371041049145
ENSG00000128245,3.7412705,1.3005087,0.00018309227274577964,0.04746371041049145
ENSG00000120071,3.7346244,0.63409,0.0001879955043219125,0.04822084685857056
ENSG00000124942,3.7251475,0.9890392,0.00019520098001814902,0.04917496117153638
ENSG00000129116,3.720963,0.8585271,0.00019846451817885882,0.04955465823377435
ENSG00000113721,-3.7256398,-0.37845042,0.00019482036710264823,0.04917496117153638
ENSG00000105894,-3.7409012,-0.8014989,0.00018336148980129606,0.04746371041049145
ENSG00000134871,-3.7789319,-0.30848077,0.00015750249070272117,0.04356796838409096
ENSG00000132475,-3.7826242,-0.6542571,0.00015518362987848578,0.043351545713083924
ENSG00000069431,-3.8284085,-0.85888416,0.00012897454724410907,0.03884523852069285
ENSG00000109472,-3.8575776,-0.45331433,0.00011451633248898869,0.03630425079973951
ENSG00000160584,-3.8879774,-0.36437201,0.00010108303010257368,0.03278227234878295
ENSG00000151617,-3.8914235,-0.8975362,9.965779187695334e-05,0.03269586741637487
ENSG00000128641,-3.909762,-0.70249516,9.238713923834912e-05,0.03066709568952965
ENSG00000112541,-3.913085,-1.3015414,9.112445575653558e-05,0.030608053799650613
ENSG00000196569,-4.101638,-0.71118826,4.1023623710545996e-05,0.015433087239907403
ENSG00000141753,-4.205145,-0.84189236,2.6091505560120133e-05,0.011325720451981377
ENSG00000171408,-4.2190523,-0.6632708,2.4533124053317637e-05,0.010987334843878685
ENSG00000142089,-4.2288985,-0.6662339,2.348382465485281e-05,0.010687034074785034
ENSG00000145623,-4.3113594,-1.1302327,1.6225380720534327e-05,0.007893088224653035
ENSG00000179603,-4.511851,-0.92918116,6.426441486826547e-06,0.00421679178025142
ENSG00000158270,-4.529697,-0.9411411,5.906840214317736e-06,0.004064914552365242
ENSG00000230876,-4.575235,-0.7303821,4.756858245286252e-06,0.003531967247125042
ENSG00000079215,-4.5838504,-0.80862254,4.56491123630456e-06,0.0034810532576306256
ENSG00000188313,-4.604404,-1.5170913,4.136487309516697e-06,0.003241971928833711
ENSG00000073417,-4.6407113,-0.6338663,3.4721159230980276e-06,0.002881345610888554
ENSG00000099622,-4.822003,-1.4958272,1.421239807941426e-06,0.0014321528993238334
ENSG00000116016,-5.228154,-0.75209385,1.712106516774166e-07,0.00021957766077628678
ENSG00000183570,-5.3710456,-0.9864346,7.82813565233756e-08,0.00011624781443721277
ENSG00000183826,-6.1469183,-0.80622196,7.900287597958676e-10,1.714666265972339e-06
ENSG00000062716,-6.229625,-1.1125556,4.675519337772821e-10,1.0993314842938347e-06
ENSG00000171862,-6.821376,-0.7821016,9.017273639072149e-12,2.8269152858491187e-08
ENSG00000118473,-6.9567595,-0.6023907,3.481883869715881e-12,1.2280169173004197e-08
ENSG00000103196,-7.81657,-1.6378525,5.428214743150694e-15,3.0631415795599365e-11
ENSG00000163638,-8.76278,-1.6780226,1.9049343316019406e-18,1.7915907388716253e-14
ENSG00000154217,-9.620129,-1.588356,6.574882752792545e-22,9.275515843502083e-18
<?xml version='1.0' encoding='utf-8'?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
<graph edgedefault="undirected" />
</graphml>
This source diff could not be displayed because it is too large. You can view the blob instead.
<?xml version='1.0' encoding='utf-8'?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
<key id="d4" for="node" attr.name="pval_adj" attr.type="double" />
<key id="d3" for="node" attr.name="pval" attr.type="double" />
<key id="d2" for="node" attr.name="logfoldchanges" attr.type="double" />
<key id="d1" for="node" attr.name="gene_symbol" attr.type="string" />
<key id="d0" for="node" attr.name="gene_id" attr.type="double" />
<graph edgedefault="undirected">
<node id="O00151">
<data key="d0">9124.0</data>
<data key="d1">PDLIM1</data>
<data key="d2">-1.0100646</data>
<data key="d3">4.389749107400742e-06</data>
<data key="d4">0.0008148471780612</data>
</node>
<node id="P14136">
<data key="d0">2670.0</data>
<data key="d1">GFAP</data>
<data key="d2">0.697769</data>
<data key="d3">8.465053097887096e-05</data>
<data key="d4">0.0090470254983668</data>
</node>
<node id="O00161">
<data key="d0">8773.0</data>
<data key="d1">SNAP23</data>
<data key="d2">1.1157777</data>
<data key="d3">7.627367671678111e-09</data>
<data key="d4">3.196513021863525e-06</data>
</node>
<node id="O95183">
<data key="d0">10791.0</data>
<data key="d1">VAMP5</data>
<data key="d2">0.61286104</data>
<data key="d3">5.3069258515606325e-05</data>
<data key="d4">0.006187393095115</data>
</node>
<node id="P49716">
<data key="d0">1052.0</data>
<data key="d1">CEBPD</data>
<data key="d2">0.5255881</data>
<data key="d3">1.7737723952519413e-05</data>
<data key="d4">0.0026455289837167</data>
</node>
<node id="O00560">
<data key="d0">6386.0</data>
<data key="d1">SDCBP</data>
<data key="d2">0.4472612</data>
<data key="d3">4.72654974065476e-05</data>
<data key="d4">0.005639668932156</data>
</node>
<node id="P02792">
<data key="d0">2512.0</data>
<data key="d1">FTL</data>
<data key="d2">0.37216356</data>
<data key="d3">0.000537883556233</data>
<data key="d4">0.0401491654473984</data>
</node>
<node id="P0DP25">
<data key="d0">801.0</data>
<data key="d1">CALM1</data>
<data key="d2">0.56518525</data>
<data key="d3">6.829908165889458e-08</data>
<data key="d4">2.294117367863941e-05</data>
</node>
<node id="P32320">
<data key="d0">978.0</data>
<data key="d1">CDA</data>
<data key="d2">1.4935253</data>
<data key="d3">1.7721334146178481e-09</data>
<data key="d4">8.474702422617387e-07</data>
</node>
<node id="P51531">
<data key="d0">6595.0</data>
<data key="d1">SMARCA2</data>
<data key="d2">0.49471265</data>
<data key="d3">8.135106212408942e-06</data>
<data key="d4">0.0013827230227898</data>
</node>
<node id="P61457">
<data key="d0">5092.0</data>
<data key="d1">PCBD1</data>
<data key="d2">1.2336749</data>
<data key="d3">0.00025610443294</data>
<data key="d4">0.0225108616056209</data>
</node>
<node id="Q02535">
<data key="d0">3399.0</data>
<data key="d1">ID3</data>
<data key="d2">0.55833423</data>
<data key="d3">2.5718655622074096e-07</data>
<data key="d4">7.11423400369432e-05</data>
</node>
<node id="Q08117">
<data key="d0">166.0</data>
<data key="d1">TLE5</data>
<data key="d2">0.51631445</data>
<data key="d3">0.0006748575810173</data>
<data key="d4">0.0482053332871016</data>
</node>
<node id="Q16629">
<data key="d0">6432.0</data>
<data key="d1">SRSF7</data>
<data key="d2">0.54219055</data>
<data key="d3">0.0005952733457394</data>
<data key="d4">0.0436250323377658</data>
</node>
<node id="Q9UFW8">
<data key="d0">8545.0</data>
<data key="d1">CGGBP1</data>
<data key="d2">0.8222251</data>
<data key="d3">2.046074915655516e-05</data>
<data key="d4">0.0029666338943363</data>
</node>
<node id="O14497">
<data key="d0">8289.0</data>
<data key="d1">ARID1A</data>
<data key="d2">0.5402293</data>
<data key="d3">0.0003701943205627</data>
<data key="d4">0.0304519905384191</data>
</node>
<node id="O14920">
<data key="d0">3551.0</data>
<data key="d1">IKBKB</data>
<data key="d2">0.7100136</data>
<data key="d3">1.008683306301303e-05</data>
<data key="d4">0.0016616038119268</data>
</node>
<node id="P07900">
<data key="d0">3320.0</data>
<data key="d1">HSP90AA1</data>
<data key="d2">1.269916</data>
<data key="d3">2.9426643130860597e-42</data>
<data key="d4">2.7675757864574393e-38</data>
</node>
<node id="P08238">
<data key="d0">3326.0</data>
<data key="d1">HSP90AB1</data>
<data key="d2">0.7063304</data>
<data key="d3">6.003626598559218e-12</data>
<data key="d4">4.457692749430219e-09</data>
</node>
<node id="P11021">
<data key="d0">3309.0</data>
<data key="d1">HSPA5</data>
<data key="d2">0.7192146</data>
<data key="d3">2.9947143781294325e-05</data>
<data key="d4">0.0039484049616318</data>
</node>
<node id="P11142">
<data key="d0">3312.0</data>
<data key="d1">HSPA8</data>
<data key="d2">1.2835685</data>
<data key="d3">3.9506430608342765e-16</data>
<data key="d4">6.556905527143479e-13</data>
</node>
<node id="Q00839">
<data key="d0">3192.0</data>
<data key="d1">HNRNPU</data>
<data key="d2">0.44455355</data>
<data key="d3">0.000190487204562</data>
<data key="d4">0.017621627792519</data>
</node>
<node id="Q02790">
<data key="d0">2288.0</data>
<data key="d1">FKBP4</data>
<data key="d2">1.8447479</data>
<data key="d3">2.71308035627686e-11</data>
<data key="d4">1.7011013833855907e-08</data>
</node>
<node id="Q9Y6Q9">
<data key="d0">8202.0</data>
<data key="d1">NCOA3</data>
<data key="d2">0.6670347</data>
<data key="d3">2.3015791076108296e-06</data>
<data key="d4">0.0004740076972353</data>
</node>
<node id="O14980">
<data key="d0">7514.0</data>
<data key="d1">XPO1</data>
<data key="d2">0.56719327</data>
<data key="d3">0.0003774494779532</data>
<data key="d4">0.030779586764308</data>
</node>
<node id="P04792">
<data key="d0">3315.0</data>
<data key="d1">HSPB1</data>
<data key="d2">2.3521888</data>
<data key="d3">9.755175041694644e-62</data>
<data key="d4">1.3762113190070718e-57</data>
</node>
<node id="O15075">
<data key="d0">9201.0</data>
<data key="d1">DCLK1</data>
<data key="d2">-0.56589335</data>
<data key="d3">0.0001501486118063</data>
<data key="d4">0.0145083667195753</data>
</node>
<node id="O75044">
<data key="d0">23380.0</data>
<data key="d1">SRGAP2</data>
<data key="d2">0.43057778</data>
<data key="d3">0.0003291708804584</data>
<data key="d4">0.0278137737932897</data>
</node>
<node id="Q15678">
<data key="d0">5784.0</data>
<data key="d1">PTPN14</data>
<data key="d2">0.53072923</data>
<data key="d3">4.7765044241579935e-06</data>
<data key="d4">0.0008639043097924</data>
</node>
<node id="Q8TEH3">
<data key="d0">57706.0</data>
<data key="d1">DENND1A</data>
<data key="d2">0.6070564</data>
<data key="d3">5.112849055418952e-09</data>
<data key="d4">2.219369786133011e-06</data>
</node>
<node id="O15162">
<data key="d0">5359.0</data>
<data key="d1">PLSCR1</data>
<data key="d2">-0.38180226</data>
<data key="d3">0.0002269985803773</data>
<data key="d4">0.0204343624171626</data>
</node>
<node id="P00533">
<data key="d0">1956.0</data>
<data key="d1">EGFR</data>
<data key="d2">0.4316732</data>
<data key="d3">0.0004066555853747</data>
<data key="d4">0.0324221282394475</data>
</node>
<node id="Q05516">
<data key="d0">7704.0</data>
<data key="d1">ZBTB16</data>
<data key="d2">0.9783372</data>
<data key="d3">8.574542868857421e-19</data>
<data key="d4">2.0160893920401005e-15</data>
</node>
<node id="O15400">
<data key="d0">8417.0</data>
<data key="d1">STX7</data>
<data key="d2">0.76500136</data>
<data key="d3">1.018810772508759e-05</data>
<data key="d4">0.0016616038119268</data>
</node>
<node id="O43491">
<data key="d0">2037.0</data>
<data key="d1">EPB41L2</data>
<data key="d2">0.61337346</data>
<data key="d3">0.0001041457691882</data>
<data key="d4">0.0105727005867155</data>
</node>
<node id="P42568">
<data key="d0">4300.0</data>
<data key="d1">MLLT3</data>
<data key="d2">0.6141529</data>
<data key="d3">2.361854439039666e-05</data>
<data key="d4">0.0032989961879952</data>
</node>
<node id="O60493">
<data key="d0">8724.0</data>
<data key="d1">SNX3</data>
<data key="d2">0.8747631</data>
<data key="d3">7.703805971530028e-09</data>
<data key="d4">3.196513021863525e-06</data>
</node>
<node id="O75970">
<data key="d0">8777.0</data>
<data key="d1">MPDZ</data>
<data key="d2">0.51546896</data>
<data key="d3">2.007339665333259e-06</data>
<data key="d4">0.0004265507614578</data>
</node>
<node id="Q15154">
<data key="d0">5108.0</data>
<data key="d1">PCM1</data>
<data key="d2">0.4150478</data>
<data key="d3">0.0002370048207728</data>
<data key="d4">0.0211616804370433</data>
</node>
<node id="O75190">
<data key="d0">10049.0</data>
<data key="d1">DNAJB6</data>
<data key="d2">0.8854717</data>
<data key="d3">3.213928584481676e-12</data>
<data key="d4">2.658975605932487e-09</data>
</node>
<node id="O95817">
<data key="d0">9531.0</data>
<data key="d1">BAG3</data>
<data key="d2">1.0001198</data>
<data key="d3">5.294114941536285e-05</data>
<data key="d4">0.006187393095115</data>
</node>
<node id="P31948">
<data key="d0">10963.0</data>
<data key="d1">STIP1</data>
<data key="d2">1.4755228</data>
<data key="d3">8.899504081812222e-09</data>
<data key="d4">3.639123299541041e-06</data>
</node>
<node id="P42336">
<data key="d0">5290.0</data>
<data key="d1">PIK3CA</data>
<data key="d2">0.5751339</data>
<data key="d3">0.0001715913492335</data>
<data key="d4">0.0163011781771866</data>
</node>
<node id="O75293">
<data key="d0">4616.0</data>
<data key="d1">GADD45B</data>
<data key="d2">-0.72020537</data>
<data key="d3">1.7815009991358365e-05</data>
<data key="d4">0.0026455289837167</data>
</node>
<node id="Q9UFF9">
<data key="d0">9337.0</data>
<data key="d1">CNOT8</data>
<data key="d2">0.49955553</data>
<data key="d3">0.0002411299391236</data>
<data key="d4">0.021394595070357</data>
</node>
<node id="O75956">
<data key="d0">10263.0</data>
<data key="d1">CDK2AP2</data>
<data key="d2">1.4763783</data>
<data key="d3">1.631305645375552e-07</data>
<data key="d4">4.794509248361584e-05</data>
</node>
<node id="P01023">
<data key="d0">2.0</data>
<data key="d1">A2M</data>
<data key="d2">0.37962964</data>
<data key="d3">0.0004483922848503</data>
<data key="d4">0.0349238907959132</data>
</node>
<node id="P26951">
<data key="d0">3563.0</data>
<data key="d1">IL3RA</data>
<data key="d2">1.113968</data>
<data key="d3">5.557352539000427e-07</data>
<data key="d4">0.000143853854943</data>
</node>
<node id="P60880">
<data key="d0">6616.0</data>
<data key="d1">SNAP25</data>
<data key="d2">-0.5821821</data>
<data key="d3">0.0006941146640063</data>
<data key="d4">0.0493310963348572</data>
</node>
<node id="Q15185">
<data key="d0">10728.0</data>
<data key="d1">PTGES3</data>
<data key="d2">1.0884552</data>
<data key="d3">1.6736600349882587e-14</data>
<data key="d4">2.0531442559649443e-11</data>
</node>
<node id="Q5JWF2">
<data key="d0">2778.0</data>
<data key="d1">GNAS</data>
<data key="d2">0.40819472</data>
<data key="d3">0.0001244658732622</data>
<data key="d4">0.0122790371122223</data>
</node>
<node id="Q96CE8">
<data key="d0">116441.0</data>
<data key="d1">TM4SF18</data>
<data key="d2">1.1982391</data>
<data key="d3">3.069587083642548e-12</data>
<data key="d4">2.658975605932487e-09</data>
</node>
<node id="O95425">
<data key="d0">6840.0</data>
<data key="d1">SVIL</data>
<data key="d2">-0.46734482</data>
<data key="d3">2.48320080304974e-05</data>
<data key="d4">0.0034049394609116</data>
</node>
<node id="P04406">
<data key="d0">2597.0</data>
<data key="d1">GAPDH</data>
<data key="d2">-0.41591844</data>
<data key="d3">7.785832795612927e-08</data>
<data key="d4">2.5250261187151585e-05</data>
</node>
<node id="O95433">
<data key="d0">10598.0</data>
<data key="d1">AHSA1</data>
<data key="d2">1.3292919</data>
<data key="d3">2.7090769339768005e-05</data>
<data key="d4">0.0036225879474955</data>
</node>
<node id="Q9UHD1">
<data key="d0">26973.0</data>
<data key="d1">CHORDC1</data>
<data key="d2">1.6922036</data>
<data key="d3">2.976170363390813e-12</data>
<data key="d4">2.658975605932487e-09</data>
</node>
<node id="O95714">
<data key="d0">8924.0</data>
<data key="d1">HERC2</data>
<data key="d2">0.68953896</data>
<data key="d3">6.492361526719836e-14</data>
<data key="d4">7.045460787553851e-11</data>
</node>
<node id="P31689">
<data key="d0">3301.0</data>
<data key="d1">DNAJA1</data>
<data key="d2">1.1777052</data>
<data key="d3">7.020411386739463e-16</data>
<data key="d4">1.1004494848714106e-12</data>
</node>
<node id="O95757">
<data key="d0">22824.0</data>
<data key="d1">HSPA4L</data>
<data key="d2">1.6046455</data>
<data key="d3">0.0002791284507904</data>
<data key="d4">0.024382691142577</data>
</node>
<node id="O95810">
<data key="d0">8436.0</data>
<data key="d1">CAVIN2</data>
<data key="d2">0.43451706</data>
<data key="d3">0.0004493132149181</data>
<data key="d4">0.0349238907959132</data>
</node>
<node id="P07355">
<data key="d0">302.0</data>
<data key="d1">ANXA2</data>
<data key="d2">-0.5457675</data>
<data key="d3">0.0001462760071732</data>
<data key="d4">0.0141827406955128</data>
</node>
<node id="P00441">
<data key="d0">6647.0</data>
<data key="d1">SOD1</data>
<data key="d2">0.7630747</data>
<data key="d3">3.447448892863547e-05</data>
<data key="d4">0.0044213532050974</data>
</node>
<node id="P02511">
<data key="d0">1410.0</data>
<data key="d1">CRYAB</data>
<data key="d2">1.4574996</data>
<data key="d3">3.8437128491202265e-10</data>
<data key="d4">2.046233170526929e-07</data>
</node>
<node id="P0DMV8">
<data key="d0">3304.0</data>
<data key="d1">HSPA1B</data>
<data key="d2">2.8006985</data>
<data key="d3">9.817635058555169e-38</data>
<data key="d4">6.9251143294283525e-34</data>
</node>
<node id="P00338">
<data key="d0">3939.0</data>
<data key="d1">LDHA</data>
<data key="d2">0.5848978</data>
<data key="d3">3.962902240384812e-05</data>
<data key="d4">0.0049916645853775</data>
</node>
<node id="P10809">
<data key="d0">3329.0</data>
<data key="d1">HSPD1</data>
<data key="d2">1.0832922</data>
<data key="d3">1.1819477592842113e-07</data>
<data key="d4">3.624853916109132e-05</data>
</node>
<node id="P14625">
<data key="d0">7184.0</data>
<data key="d1">HSP90B1</data>
<data key="d2">0.5060826</data>
<data key="d3">0.0003736711147859</data>
<data key="d4">0.0305597985614094</data>
</node>
<node id="P20962">
<data key="d0">5763.0</data>
<data key="d1">PTMS</data>
<data key="d2">1.1373512</data>
<data key="d3">7.028235882990509e-08</data>
<data key="d4">2.332960887512673e-05</data>
</node>
<node id="P34932">
<data key="d0">3308.0</data>
<data key="d1">HSPA4</data>
<data key="d2">0.8810992</data>
<data key="d3">0.0004808639722918</data>
<data key="d4">0.0370698824541381</data>
</node>
<node id="P37802">
<data key="d0">8407.0</data>
<data key="d1">TAGLN2</data>
<data key="d2">-0.41822565</data>
<data key="d3">1.3937128749638858e-06</data>
<data key="d4">0.0003223246620254</data>
</node>
<node id="P50454">
<data key="d0">871.0</data>
<data key="d1">SERPINH1</data>
<data key="d2">0.59102696</data>
<data key="d3">0.000162832240012</data>
<data key="d4">0.0155739378031834</data>
</node>
<node id="P05362">
<data key="d0">3383.0</data>
<data key="d1">ICAM1</data>
<data key="d2">-1.3582723</data>
<data key="d3">1.7388582545100387e-06</data>
<data key="d4">0.0003803246949689</data>
</node>
<node id="P06396">
<data key="d0">2934.0</data>
<data key="d1">GSN</data>
<data key="d2">0.51229924</data>
<data key="d3">0.0002696953601689</data>
<data key="d4">0.0236318465439938</data>
</node>
<node id="P0DP23">
<data key="d0">801.0</data>
<data key="d1">CALM1</data>
<data key="d2">0.56518525</data>
<data key="d3">6.829908165889458e-08</data>
<data key="d4">2.294117367863941e-05</data>
</node>
<node id="P35637">
<data key="d0">2521.0</data>
<data key="d1">FUS</data>
<data key="d2">-0.5443241</data>
<data key="d3">0.0003471918171175</data>
<data key="d4">0.0290683000592645</data>
</node>
<node id="P46934">
<data key="d0">4734.0</data>
<data key="d1">NEDD4</data>
<data key="d2">0.6356499</data>
<data key="d3">8.374938899556305e-07</data>
<data key="d4">0.0002054773052617</data>
</node>
<node id="P49908">
<data key="d0">6414.0</data>
<data key="d1">SELENOP</data>
<data key="d2">0.91125673</data>
<data key="d3">4.266167147380685e-05</data>
<data key="d4">0.0052453314437276</data>
</node>
<node id="Q01650">
<data key="d0">8140.0</data>
<data key="d1">SLC7A5</data>
<data key="d2">0.43621567</data>
<data key="d3">2.152752228741109e-05</data>
<data key="d4">0.003067671925956</data>
</node>
<node id="Q07157">
<data key="d0">7082.0</data>
<data key="d1">TJP1</data>
<data key="d2">0.49666807</data>
<data key="d3">1.2844546450651051e-06</data>
<data key="d4">0.0003020073984209</data>
</node>
<node id="Q13480">
<data key="d0">2549.0</data>
<data key="d1">GAB1</data>
<data key="d2">0.89539665</data>
<data key="d3">6.313816856577873e-10</data>
<data key="d4">3.125339344006047e-07</data>
</node>
<node id="Q13905">
<data key="d0">2889.0</data>
<data key="d1">RAPGEF1</data>
<data key="d2">0.42883807</data>
<data key="d3">7.244574626561685e-05</data>
<data key="d4">0.0080272075098855</data>
</node>
<node id="Q9NZM3">
<data key="d0">50618.0</data>
<data key="d1">ITSN2</data>
<data key="d2">0.39410216</data>
<data key="d3">0.0003872990235478</data>
<data key="d4">0.0311328830467343</data>
</node>
<node id="P05090">
<data key="d0">347.0</data>
<data key="d1">APOD</data>
<data key="d2">0.7910619</data>
<data key="d3">0.0004665618971681</data>
<data key="d4">0.0360658737769814</data>
</node>
<node id="P01130">
<data key="d0">3949.0</data>
<data key="d1">LDLR</data>
<data key="d2">0.67354864</data>
<data key="d3">0.0003863433928951</data>
<data key="d4">0.0311328830467343</data>
</node>
<node id="P62079">
<data key="d0">10098.0</data>
<data key="d1">TSPAN5</data>
<data key="d2">0.40062353</data>
<data key="d3">0.0003413314646254</data>
<data key="d4">0.0286627002214459</data>
</node>
<node id="P43490">
<data key="d0">10135.0</data>
<data key="d1">NAMPT</data>
<data key="d2">-0.43115568</data>
<data key="d3">2.7067072869136e-08</data>
<data key="d4">9.918148844190546e-06</data>
</node>
<node id="Q14469">
<data key="d0">3280.0</data>
<data key="d1">HES1</data>
<data key="d2">0.5422504</data>
<data key="d3">0.000358448816502</data>
<data key="d4">0.0297459804635469</data>
</node>
<node id="Q96Q15">
<data key="d0">23049.0</data>
<data key="d1">SMG1</data>
<data key="d2">0.4531772</data>
<data key="d3">0.0001078089838891</data>
<data key="d4">0.0108250195033142</data>
</node>
<node id="Q9NXU5">
<data key="d0">54622.0</data>
<data key="d1">ARL15</data>
<data key="d2">0.45187223</data>
<data key="d3">1.0914152949943717e-05</data>
<data key="d4">0.0017527222168222</data>
</node>
<node id="P04439">
<data key="d0">3105.0</data>
<data key="d1">HLA-A</data>
<data key="d2">-0.38561535</data>
<data key="d3">9.379683837862748e-06</data>
<data key="d4">0.0015847172424269</data>
</node>
<node id="P10321">
<data key="d0">3107.0</data>
<data key="d1">HLA-C</data>
<data key="d2">-0.41342628</data>
<data key="d3">3.163860622378613e-05</data>
<data key="d4">0.004132792937982</data>
</node>
<node id="P22626">
<data key="d0">3181.0</data>
<data key="d1">HNRNPA2B1</data>
<data key="d2">0.4176969</data>
<data key="d3">6.397324068491536e-05</data>
<data key="d4">0.0072200199436995</data>
</node>
<node id="P51114">
<data key="d0">8087.0</data>
<data key="d1">FXR1</data>
<data key="d2">0.9775797</data>
<data key="d3">2.15217519505289e-09</data>
<data key="d4">1.0120603854736216e-06</data>
</node>
<node id="Q14240">
<data key="d0">1974.0</data>
<data key="d1">EIF4A2</data>
<data key="d2">0.62618476</data>
<data key="d3">1.568423474541526e-06</data>
<data key="d4">0.0003532824952216</data>
</node>
<node id="Q7Z3B3">
<data key="d0">284058.0</data>
<data key="d1">KANSL1</data>
<data key="d2">0.57327557</data>
<data key="d3">3.564439588321449e-08</data>
<data key="d4">1.263896631841255e-05</data>
</node>
<node id="Q9H0M0">
<data key="d0">11059.0</data>
<data key="d1">WWP1</data>
<data key="d2">0.51859874</data>
<data key="d3">7.975027314000246e-05</data>
<data key="d4">0.0087215269637409</data>
</node>
<node id="P0CG48">
<data key="d0">7316.0</data>
<data key="d1">UBC</data>
<data key="d2">0.3710061</data>
<data key="d3">0.0004952246036005</data>
<data key="d4">0.0378665642021373</data>
</node>
<node id="Q92572">
<data key="d0">1176.0</data>
<data key="d1">AP3S1</data>
<data key="d2">0.68246096</data>
<data key="d3">2.7680310724879153e-09</data>
<data key="d4">1.280327814922074e-06</data>
</node>
<node id="P22694">
<data key="d0">5567.0</data>
<data key="d1">PRKACB</data>
<data key="d2">0.54072803</data>
<data key="d3">4.519030700316048e-05</data>
<data key="d4">0.0054489081713426</data>
</node>
<node id="P50502">
<data key="d0">6767.0</data>
<data key="d1">ST13</data>
<data key="d2">0.88912725</data>
<data key="d3">1.626656620317527e-06</data>
<data key="d4">0.0003600301860306</data>
</node>
<node id="Q5SSJ5">
<data key="d0">50809.0</data>
<data key="d1">HP1BP3</data>
<data key="d2">0.6669579</data>
<data key="d3">7.71185669353384e-08</data>
<data key="d4">2.5250261187151585e-05</data>
</node>
<node id="Q9HB71">
<data key="d0">27101.0</data>
<data key="d1">CACYBP</data>
<data key="d2">2.0156648</data>
<data key="d3">3.298392564509553e-12</data>
<data key="d4">2.658975605932487e-09</data>
</node>
<node id="Q9NYJ8">
<data key="d0">23118.0</data>
<data key="d1">TAB2</data>
<data key="d2">0.55546296</data>
<data key="d3">0.0002819126334418</data>
<data key="d4">0.0244743537001884</data>
</node>
<node id="Q9Y2Z0">
<data key="d0">10910.0</data>
<data key="d1">SUGT1</data>
<data key="d2">0.7728168</data>
<data key="d3">8.112328695380423e-05</data>
<data key="d4">0.0088034366976984</data>
</node>
<node id="P51812">
<data key="d0">6197.0</data>
<data key="d1">RPS6KA3</data>
<data key="d2">0.449293</data>
<data key="d3">5.401774058856698e-05</data>
<data key="d4">0.0062720598794502</data>
</node>
<node id="P54764">
<data key="d0">2043.0</data>
<data key="d1">EPHA4</data>
<data key="d2">0.68536216</data>
<data key="d3">1.5885528797679132e-08</data>
<data key="d4">6.05689452738536e-06</data>
</node>
<node id="P63092">
<data key="d0">2778.0</data>
<data key="d1">GNAS</data>
<data key="d2">0.40819472</data>
<data key="d3">0.0001244658732622</data>
<data key="d4">0.0122790371122223</data>
</node>
<node id="Q13464">
<data key="d0">6093.0</data>
<data key="d1">ROCK1</data>
<data key="d2">0.44965607</data>
<data key="d3">0.0002866263622903</data>
<data key="d4">0.0245810419818301</data>
</node>
<node id="Q8WY36">
<data key="d0">56987.0</data>
<data key="d1">BBX</data>
<data key="d2">0.5743025</data>
<data key="d3">2.548678853305424e-05</data>
<data key="d4">0.0034572583579813</data>
</node>
<node id="Q92598">
<data key="d0">10808.0</data>
<data key="d1">HSPH1</data>
<data key="d2">2.1945572</data>
<data key="d3">2.518457729204452e-33</data>
<data key="d4">1.0151183547071948e-29</data>
</node>
<node id="Q9BXM7">
<data key="d0">65018.0</data>
<data key="d1">PINK1</data>
<data key="d2">0.81410664</data>
<data key="d3">0.0001102392602958</data>
<data key="d4">0.0109728589314465</data>
</node>
<node id="P60896">
<data key="d0">7979.0</data>
<data key="d1">SEM1</data>
<data key="d2">0.6165204</data>
<data key="d3">1.0140791525705015e-05</data>
<data key="d4">0.0016616038119268</data>
</node>
<node id="Q9NX09">
<data key="d0">54541.0</data>
<data key="d1">DDIT4</data>
<data key="d2">1.310385</data>
<data key="d3">7.300146644259293e-12</data>
<data key="d4">5.2813753222506654e-09</data>
</node>
<node id="Q9UNQ0">
<data key="d0">9429.0</data>
<data key="d1">ABCG2</data>
<data key="d2">0.5178807</data>
<data key="d3">2.482786307609128e-06</data>
<data key="d4">0.0005076218526753</data>
</node>
<node id="Q9Y4E8">
<data key="d0">9958.0</data>
<data key="d1">USP15</data>
<data key="d2">0.47323006</data>
<data key="d3">2.9823192213587693e-05</data>
<data key="d4">0.0039484049616318</data>
</node>
<node id="Q9HD67">
<data key="d0">4651.0</data>
<data key="d1">MYO10</data>
<data key="d2">0.6503947</data>
<data key="d3">1.4160718302358606e-07</data>
<data key="d4">4.250475179798384e-05</data>
</node>
<node id="P15907">
<data key="d0">6480.0</data>
<data key="d1">ST6GAL1</data>
<data key="d2">0.9701311</data>
<data key="d3">1.2926482233206137e-18</data>
<data key="d4">2.8055438169993162e-15</data>
</node>
<node id="Q9BRX8">
<data key="d0">84293.0</data>
<data key="d1">PRXL2A</data>
<data key="d2">0.5958726</data>
<data key="d3">0.0003564730822634</data>
<data key="d4">0.0296692861830732</data>
</node>
<node id="P49789">
<data key="d0">2272.0</data>
<data key="d1">FHIT</data>
<data key="d2">0.50413847</data>
<data key="d3">9.01867452463234e-05</data>
<data key="d4">0.0094948470788246</data>
</node>
<node id="P49792">
<data key="d0">5903.0</data>
<data key="d1">RANBP2</data>
<data key="d2">0.58483577</data>
<data key="d3">0.0003857895222649</data>
<data key="d4">0.0311328830467343</data>
</node>
<node id="Q6NVY1">
<data key="d0">26275.0</data>
<data key="d1">HIBCH</data>
<data key="d2">0.6849432</data>
<data key="d3">2.8062925998388465e-05</data>
<data key="d4">0.0037348842313421</data>
</node>
<node id="P25685">
<data key="d0">3337.0</data>
<data key="d1">DNAJB1</data>
<data key="d2">1.9478366</data>
<data key="d3">8.08335084963773e-14</data>
<data key="d4">8.447101637871425e-11</data>
</node>
<node id="P31641">
<data key="d0">6533.0</data>
<data key="d1">SLC6A6</data>
<data key="d2">-1.7631438</data>
<data key="d3">2.050305190131462e-05</data>
<data key="d4">0.0029666338943363</data>
</node>
<node id="P60484">
<data key="d0">5728.0</data>
<data key="d1">PTEN</data>
<data key="d2">0.50814</data>
<data key="d3">4.991147273795052e-06</data>
<data key="d4">0.0008912988628489</data>
</node>
<node id="Q0VF96">
<data key="d0">84952.0</data>
<data key="d1">CGNL1</data>
<data key="d2">0.57085323</data>
<data key="d3">1.705574922346687e-07</data>
<data key="d4">4.961113034434203e-05</data>
</node>
<node id="Q8TEW0">
<data key="d0">56288.0</data>
<data key="d1">PARD3</data>
<data key="d2">0.5368612</data>
<data key="d3">1.5761695881190673e-06</data>
<data key="d4">0.0003532824952216</data>
</node>
<node id="P63167">
<data key="d0">8655.0</data>
<data key="d1">DYNLL1</data>
<data key="d2">0.5470854</data>
<data key="d3">0.0002116586489918</data>
<data key="d4">0.0193894440951459</data>
</node>
<node id="Q12948">
<data key="d0">2296.0</data>
<data key="d1">FOXC1</data>
<data key="d2">0.6879579</data>
<data key="d3">0.0002274105900758</data>
<data key="d4">0.0204343624171626</data>
</node>
<node id="Q7Z7G8">
<data key="d0">157680.0</data>
<data key="d1">VPS13B</data>
<data key="d2">0.49256817</data>
<data key="d3">9.925634390468131e-06</data>
<data key="d4">0.0016473633783944</data>
</node>
<node id="Q99576">
<data key="d0">1831.0</data>
<data key="d1">TSC22D3</data>
<data key="d2">0.8531887</data>
<data key="d3">9.479360531537753e-08</data>
<data key="d4">3.0051703078352547e-05</data>
</node>
<node id="P15880">
<data key="d0">6187.0</data>
<data key="d1">RPS2</data>
<data key="d2">-0.4818453</data>
<data key="d3">2.004791890192993e-05</data>
<data key="d4">0.0029615289623976</data>
</node>
<node id="P20839">
<data key="d0">3614.0</data>
<data key="d1">IMPDH1</data>
<data key="d2">1.0183971</data>
<data key="d3">0.0002365181700025</data>
<data key="d4">0.0211616804370433</data>
</node>
<node id="Q6ZNC4">
<data key="d0">619279.0</data>
<data key="d1">ZNF704</data>
<data key="d2">0.82172745</data>
<data key="d3">4.3898804778163936e-05</data>
<data key="d4">0.0053159003296819</data>
</node>
<node id="P22105">
<data key="d0">7148.0</data>
<data key="d1">TNXB</data>
<data key="d2">0.7768566</data>
<data key="d3">1.591530490194424e-05</data>
<data key="d4">0.0024404909120019</data>
</node>
<node id="Q8N9N5">
<data key="d0">54971.0</data>
<data key="d1">BANP</data>
<data key="d2">0.98421854</data>
<data key="d3">0.0003337868440095</data>
<data key="d4">0.0281128232947173</data>
</node>
<node id="P98179">
<data key="d0">5935.0</data>
<data key="d1">RBM3</data>
<data key="d2">-1.9828013</data>
<data key="d3">4.0163654189549315e-09</data>
<data key="d4">1.770652348372084e-06</data>
</node>
<node id="Q13627">
<data key="d0">1859.0</data>
<data key="d1">DYRK1A</data>
<data key="d2">0.50807405</data>
<data key="d3">4.812537425784263e-06</data>
<data key="d4">0.0008648773469331</data>
</node>
<node id="Q9H334">
<data key="d0">27086.0</data>
<data key="d1">FOXP1</data>
<data key="d2">0.39772016</data>
<data key="d3">5.656558199275478e-05</data>
<data key="d4">0.0065142771262268</data>
</node>
<node id="Q9NXK6">
<data key="d0">54852.0</data>
<data key="d1">PAQR5</data>
<data key="d2">0.8418353</data>
<data key="d3">2.201044271018023e-05</data>
<data key="d4">0.0031207268395363</data>
</node>
<node id="P28290">
<data key="d0">6744.0</data>
<data key="d1">ITPRID2</data>
<data key="d2">0.5566872</data>
<data key="d3">6.513984295235856e-05</data>
<data key="d4">0.0073223931031904</data>
</node>
<node id="P29320">
<data key="d0">2042.0</data>
<data key="d1">EPHA3</data>
<data key="d2">0.81330836</data>
<data key="d3">2.093475223463926e-06</data>
<data key="d4">0.0004403568970686</data>
</node>
<node id="P30825">
<data key="d0">6541.0</data>
<data key="d1">SLC7A1</data>
<data key="d2">0.49938244</data>
<data key="d3">1.5776570759499682e-06</data>
<data key="d4">0.0003532824952216</data>
</node>
<node id="Q09328">
<data key="d0">4249.0</data>
<data key="d1">MGAT5</data>
<data key="d2">0.45315814</data>
<data key="d3">7.20513320246897e-05</data>
<data key="d4">0.0080272075098855</data>
</node>
<node id="Q04771">
<data key="d0">90.0</data>
<data key="d1">ACVR1</data>
<data key="d2">0.76350725</data>
<data key="d3">2.6820844039822343e-08</data>
<data key="d4">9.918148844190546e-06</data>
</node>
<node id="P42677">
<data key="d0">6232.0</data>
<data key="d1">RPS27</data>
<data key="d2">-0.48117277</data>
<data key="d3">0.0004189717149825</data>
<data key="d4">0.0331128485664755</data>
</node>
<node id="P62241">
<data key="d0">6202.0</data>
<data key="d1">RPS8</data>
<data key="d2">-0.40824866</data>
<data key="d3">0.0006723243892208</data>
<data key="d4">0.0481462757407769</data>
</node>
<node id="P37235">
<data key="d0">3241.0</data>
<data key="d1">HPCAL1</data>
<data key="d2">0.8872333</data>
<data key="d3">1.275933589866958e-06</data>
<data key="d4">0.0003020073984209</data>
</node>
<node id="Q99685">
<data key="d0">11343.0</data>
<data key="d1">MGLL</data>
<data key="d2">0.44685656</data>
<data key="d3">0.0002841217372859</data>
<data key="d4">0.0245810419818301</data>
</node>
<node id="P41134">
<data key="d0">3397.0</data>
<data key="d1">ID1</data>
<data key="d2">-0.4664058</data>
<data key="d3">3.5616364793107733e-07</data>
<data key="d4">9.662651275360912e-05</data>
</node>
<node id="P42167">
<data key="d0">7112.0</data>
<data key="d1">TMPO</data>
<data key="d2">0.946054</data>
<data key="d3">1.0933160026961356e-05</data>
<data key="d4">0.0017527222168222</data>
</node>
<node id="Q10589">
<data key="d0">684.0</data>
<data key="d1">BST2</data>
<data key="d2">0.8273381</data>
<data key="d3">1.3501542060694875e-10</data>
<data key="d4">7.618920184850118e-08</data>
</node>
<node id="P51825">
<data key="d0">4299.0</data>
<data key="d1">AFF1</data>
<data key="d2">0.37787962</data>
<data key="d3">0.0004067848093838</data>
<data key="d4">0.0324221282394475</data>
</node>
<node id="P46531">
<data key="d0">4851.0</data>
<data key="d1">NOTCH1</data>
<data key="d2">0.7782756</data>
<data key="d3">3.2816812325586995e-06</data>
<data key="d4">0.0006430044165044</data>
</node>
<node id="P49368">
<data key="d0">7203.0</data>
<data key="d1">CCT3</data>
<data key="d2">0.74788505</data>
<data key="d3">0.0002947665267639</data>
<data key="d4">0.0252025380383186</data>
</node>
<node id="Q16666">
<data key="d0">3428.0</data>
<data key="d1">IFI16</data>
<data key="d2">0.4273685</data>
<data key="d3">9.299661869150572e-05</data>
<data key="d4">0.0097181466532623</data>
</node>
<node id="Q9GZV5">
<data key="d0">25937.0</data>
<data key="d1">WWTR1</data>
<data key="d2">0.35959142</data>
<data key="d3">0.0006276308292329</data>
<data key="d4">0.0454066765302758</data>
</node>
<node id="P48643">
<data key="d0">22948.0</data>
<data key="d1">CCT5</data>
<data key="d2">0.99748135</data>
<data key="d3">1.3316111649443875e-05</data>
<data key="d4">0.0020989613977042</data>
</node>
<node id="P50991">
<data key="d0">10575.0</data>
<data key="d1">CCT4</data>
<data key="d2">0.7378894</data>
<data key="d3">0.0001049213597122</data>
<data key="d4">0.0105727005867155</data>
</node>
<node id="P49759">
<data key="d0">1195.0</data>
<data key="d1">CLK1</data>
<data key="d2">0.5391716</data>
<data key="d3">8.563125798192916e-05</data>
<data key="d4">0.0091173054489061</data>
</node>
<node id="P50895">
<data key="d0">4059.0</data>
<data key="d1">BCAM</data>
<data key="d2">0.98403025</data>
<data key="d3">2.046267020435237e-05</data>
<data key="d4">0.0029666338943363</data>
</node>
<node id="Q8NG11">
<data key="d0">81619.0</data>
<data key="d1">TSPAN14</data>
<data key="d2">0.71726483</data>
<data key="d3">3.412778043488893e-09</data>
<data key="d4">1.5284370237625255e-06</data>
</node>
<node id="P51003">
<data key="d0">10914.0</data>
<data key="d1">PAPOLA</data>
<data key="d2">1.0141777</data>
<data key="d3">1.3603957287803012e-14</data>
<data key="d4">1.7808877709510822e-11</data>
</node>
<node id="Q14011">
<data key="d0">1153.0</data>
<data key="d1">CIRBP</data>
<data key="d2">-1.3474184</data>
<data key="d3">2.2483568716129377e-11</data>
<data key="d4">1.4417588439217965e-08</data>
</node>
<node id="P56545">
<data key="d0">1488.0</data>
<data key="d1">CTBP2</data>
<data key="d2">0.46231577</data>
<data key="d3">0.0001647046424809</data>
<data key="d4">0.0156998023229758</data>
</node>
<node id="Q9UIF8">
<data key="d0">29994.0</data>
<data key="d1">BAZ2B</data>
<data key="d2">0.524279</data>
<data key="d3">5.159961788229626e-07</data>
<data key="d4">0.0001348040017174</data>
</node>
<node id="Q92831">
<data key="d0">8850.0</data>
<data key="d1">KAT2B</data>
<data key="d2">1.2426151</data>
<data key="d3">1.2950407625098874e-08</data>
<data key="d4">5.084299563145958e-06</data>
</node>
<node id="Q9Y244">
<data key="d0">51371.0</data>
<data key="d1">POMP</data>
<data key="d2">-0.5739482</data>
<data key="d3">4.875138306188593e-05</data>
<data key="d4">0.005755314950172</data>
</node>
<node id="Q96QD8">
<data key="d0">54407.0</data>
<data key="d1">SLC38A2</data>
<data key="d2">0.901904</data>
<data key="d3">1.3886064490846643e-14</data>
<data key="d4">1.7808877709510822e-11</data>
</node>
<node id="Q9H3E2">
<data key="d0">83891.0</data>
<data key="d1">SNX25</data>
<data key="d2">0.69695085</data>
<data key="d3">0.0005429795546802</data>
<data key="d4">0.0404226072171578</data>
</node>
<node id="P62324">
<data key="d0">694.0</data>
<data key="d1">BTG1</data>
<data key="d2">0.67301464</data>
<data key="d3">1.446150085926382e-05</data>
<data key="d4">0.0022543162803543</data>
</node>
<node id="Q14149">
<data key="d0">23515.0</data>
<data key="d1">MORC3</data>
<data key="d2">0.6664004</data>
<data key="d3">0.0001756052761882</data>
<data key="d4">0.0165709126008417</data>
</node>
<node id="Q6P1L5">
<data key="d0">150864.0</data>
<data key="d1">FAM117B</data>
<data key="d2">0.91597646</data>
<data key="d3">0.0006339534736437</data>
<data key="d4">0.0457467960584588</data>
</node>
<node id="Q5TBA9">
<data key="d0">10129.0</data>
<data key="d1">FRY</data>
<data key="d2">0.5704488</data>
<data key="d3">9.82876282819013e-06</data>
<data key="d4">0.0016409381254283</data>
</node>
<node id="Q6P5Z2">
<data key="d0">29941.0</data>
<data key="d1">PKN3</data>
<data key="d2">0.8268803</data>
<data key="d3">4.071606101883587e-05</data>
<data key="d4">0.005105794051762</data>
</node>
<node id="Q04724">
<data key="d0">7088.0</data>
<data key="d1">TLE1</data>
<data key="d2">0.61892694</data>
<data key="d3">4.275832826714053e-05</data>
<data key="d4">0.0052453314437276</data>
</node>
<node id="Q07817">
<data key="d0">598.0</data>
<data key="d1">BCL2L1</data>
<data key="d2">0.5635817</data>
<data key="d3">2.341677069264441e-05</data>
<data key="d4">0.0032935303166905</data>
</node>
<node id="Q9HCM3">
<data key="d0">57670.0</data>
<data key="d1">KIAA1549</data>
<data key="d2">0.8420002</data>
<data key="d3">8.308664760658021e-07</data>
<data key="d4">0.0002054773052617</data>
</node>
<node id="Q63HR2">
<data key="d0">23371.0</data>
<data key="d1">TNS2</data>
<data key="d2">0.66540366</data>
<data key="d3">6.655850705134314e-06</data>
<data key="d4">0.0011381504705779</data>
</node>
<node id="Q9HBL0">
<data key="d0">7145.0</data>
<data key="d1">TNS1</data>
<data key="d2">0.50801563</data>
<data key="d3">3.8088102959339485e-05</data>
<data key="d4">0.0048190844170303</data>
</node>
<node id="Q9NUQ6">
<data key="d0">26010.0</data>
<data key="d1">SPATS2L</data>
<data key="d2">0.5235091</data>
<data key="d3">0.0005367525303864</data>
<data key="d4">0.0401491654473984</data>
</node>
<node id="Q5VT06">
<data key="d0">9857.0</data>
<data key="d1">CEP350</data>
<data key="d2">0.47660443</data>
<data key="d3">0.0002493172913433</data>
<data key="d4">0.0219827730476659</data>
</node>
<node id="Q8WXW3">
<data key="d0">10464.0</data>
<data key="d1">PIBF1</data>
<data key="d2">0.52850866</data>
<data key="d3">4.248051759605648e-05</data>
<data key="d4">0.0052453314437276</data>
</node>
<node id="Q15165">
<data key="d0">5445.0</data>
<data key="d1">PON2</data>
<data key="d2">0.698899</data>
<data key="d3">1.8206831344642241e-13</data>
<data key="d4">1.834663379961003e-10</data>
</node>
<node id="Q7Z417">
<data key="d0">57532.0</data>
<data key="d1">NUFIP2</data>
<data key="d2">0.61085945</data>
<data key="d3">2.459748206367928e-05</data>
<data key="d4">0.0034020488060132</data>
</node>
<node id="Q7Z2W4">
<data key="d0">56829.0</data>
<data key="d1">ZC3HAV1</data>
<data key="d2">0.76270187</data>
<data key="d3">4.222881931056682e-06</data>
<data key="d4">0.0007943240912317</data>
</node>
<node id="Q86W92">
<data key="d0">8496.0</data>
<data key="d1">PPFIBP1</data>
<data key="d2">0.48361278</data>
<data key="d3">1.2974289156353322e-08</data>
<data key="d4">5.084299563145958e-06</data>
</node>
<node id="Q8N8A2">
<data key="d0">91526.0</data>
<data key="d1">ANKRD44</data>
<data key="d2">0.43592003</data>
<data key="d3">0.0005891280044029</data>
<data key="d4">0.04328710063601</data>
</node>
<node id="Q9Y5W3">
<data key="d0">10365.0</data>
<data key="d1">KLF2</data>
<data key="d2">0.45013064</data>
<data key="d3">0.0001803997619698</data>
<data key="d4">0.01696659761326</data>
</node>
<node id="Q96PU8">
<data key="d0">9444.0</data>
<data key="d1">QKI</data>
<data key="d2">0.3695819</data>
<data key="d3">0.0001042716583066</data>
<data key="d4">0.0105727005867155</data>
</node>
<node id="Q9NWB1">
<data key="d0">54715.0</data>
<data key="d1">RBFOX1</data>
<data key="d2">-0.68668795</data>
<data key="d3">1.5597803964219047e-05</data>
<data key="d4">0.0024048745292373</data>
</node>
<node id="Q96BY9">
<data key="d0">51669.0</data>
<data key="d1">SARAF</data>
<data key="d2">0.47947785</data>
<data key="d3">0.0001557773148719</data>
<data key="d4">0.0150008769252931</data>
</node>
<node id="Q9HBH9">
<data key="d0">2872.0</data>
<data key="d1">MKNK2</data>
<data key="d2">0.88101023</data>
<data key="d3">4.229243218926093e-05</data>
<data key="d4">0.0052453314437276</data>
</node>
<node id="Q9NUL3">
<data key="d0">27067.0</data>
<data key="d1">STAU2</data>
<data key="d2">1.0377384</data>
<data key="d3">3.979068180048676e-18</data>
<data key="d4">8.01924347857667e-15</data>
</node>
<node id="Q9UKF7">
<data key="d0">26207.0</data>
<data key="d1">PITPNC1</data>
<data key="d2">-0.3494779</data>
<data key="d3">3.112501352902726e-05</data>
<data key="d4">0.0040846151475418</data>
</node>
<node id="Q9UBN6">
<data key="d0">8793.0</data>
<data key="d1">TNFRSF10D</data>
<data key="d2">0.6231233</data>
<data key="d3">4.779608777687531e-05</data>
<data key="d4">0.0056662462883383</data>
</node>
<edge source="O00151" target="P14136" />
<edge source="P14136" target="P11142" />
<edge source="P14136" target="Q08117" />
<edge source="O00161" target="O95183" />
<edge source="O00161" target="P49716" />
<edge source="O95183" target="O14980" />
<edge source="O95183" target="O15400" />
<edge source="O95183" target="P26951" />
<edge source="O95183" target="P60880" />
<edge source="O95183" target="Q15185" />
<edge source="O95183" target="Q5JWF2" />
<edge source="O95183" target="Q8TEH3" />
<edge source="O95183" target="Q96CE8" />
<edge source="P49716" target="O14980" />
<edge source="O00560" target="P02792" />
<edge source="O00560" target="P0DP25" />
<edge source="O00560" target="P32320" />
<edge source="O00560" target="P51531" />
<edge source="O00560" target="P61457" />
<edge source="O00560" target="Q02535" />
<edge source="O00560" target="Q08117" />
<edge source="O00560" target="Q16629" />
<edge source="O00560" target="Q9UFW8" />
<edge source="O00560" target="P56545" />
<edge source="P02792" target="O95714" />
<edge source="P02792" target="P42336" />
<edge source="P02792" target="P43490" />
<edge source="P0DP25" target="P00533" />
<edge source="P0DP25" target="Q9HD67" />
<edge source="P0DP25" target="P29320" />
<edge source="P51531" target="O14497" />
<edge source="P51531" target="P04792" />
<edge source="P51531" target="P11021" />
<edge source="P51531" target="P61457" />
<edge source="P61457" target="P11142" />
<edge source="P61457" target="P50502" />
<edge source="Q08117" target="Q04724" />
<edge source="Q08117" target="P01130" />
<edge source="Q08117" target="Q05516" />
<edge source="Q08117" target="Q63HR2" />
<edge source="Q16629" target="P22694" />
<edge source="Q16629" target="P49759" />
<edge source="Q16629" target="Q13627" />
<edge source="O14920" target="P07900" />
<edge source="O14920" target="P08238" />
<edge source="O14920" target="P11021" />
<edge source="O14920" target="P11142" />
<edge source="O14920" target="Q00839" />
<edge source="O14920" target="Q02790" />
<edge source="O14920" target="Q9Y6Q9" />
<edge source="P07900" target="O95433" />
<edge source="P07900" target="P00533" />
<edge source="P07900" target="P04792" />
<edge source="P07900" target="P08238" />
<edge source="P07900" target="P11142" />
<edge source="P07900" target="P22694" />
<edge source="P07900" target="P31689" />
<edge source="P07900" target="P31948" />
<edge source="P07900" target="P34932" />
<edge source="P07900" target="P50502" />
<edge source="P07900" target="Q02790" />
<edge source="P07900" target="Q15185" />
<edge source="P07900" target="Q5SSJ5" />
<edge source="P07900" target="Q9HB71" />
<edge source="P07900" target="Q9NYJ8" />
<edge source="P07900" target="Q9UHD1" />
<edge source="P07900" target="Q9Y2Z0" />
<edge source="P08238" target="O14980" />
<edge source="P08238" target="O95433" />
<edge source="P08238" target="P00338" />
<edge source="P08238" target="P00533" />
<edge source="P08238" target="P04406" />
<edge source="P08238" target="P04792" />
<edge source="P08238" target="P22694" />
<edge source="P08238" target="P31948" />
<edge source="P08238" target="P51812" />
<edge source="P08238" target="P54764" />
<edge source="P08238" target="P63092" />
<edge source="P08238" target="Q02790" />
<edge source="P08238" target="Q13464" />
<edge source="P08238" target="Q15185" />
<edge source="P08238" target="Q5SSJ5" />
<edge source="P08238" target="Q8WY36" />
<edge source="P08238" target="Q92598" />
<edge source="P08238" target="Q9BXM7" />
<edge source="P08238" target="Q9H0M0" />
<edge source="P08238" target="Q9HB71" />
<edge source="P08238" target="Q9UHD1" />
<edge source="P08238" target="Q9Y2Z0" />
<edge source="P11021" target="O95757" />
<edge source="P11021" target="P00533" />
<edge source="P11021" target="P01023" />
<edge source="P11021" target="P04792" />
<edge source="P11021" target="P0DMV8" />
<edge source="P11021" target="P10809" />
<edge source="P11021" target="P11142" />
<edge source="P11021" target="P14625" />
<edge source="P11021" target="P22626" />
<edge source="P11021" target="P25685" />
<edge source="P11021" target="P31641" />
<edge source="P11021" target="P31948" />
<edge source="P11021" target="P35637" />
<edge source="P11021" target="P37802" />
<edge source="P11021" target="P60484" />
<edge source="P11021" target="Q0VF96" />
<edge source="P11021" target="Q8TEW0" />
<edge source="P11021" target="Q92598" />
<edge source="P11021" target="Q9NYJ8" />
<edge source="P11021" target="Q15165" />
<edge source="P11142" target="O75190" />
<edge source="P11142" target="O95757" />
<edge source="P11142" target="O95817" />
<edge source="P11142" target="P00338" />
<edge source="P11142" target="P00533" />
<edge source="P11142" target="P34932" />
<edge source="P11142" target="P63092" />
<edge source="P11142" target="P63167" />
<edge source="P11142" target="Q12948" />
<edge source="P11142" target="Q7Z7G8" />
<edge source="P11142" target="Q92598" />
<edge source="P11142" target="Q99576" />
<edge source="P11142" target="Q9NYJ8" />
<edge source="Q00839" target="P04792" />
<edge source="Q00839" target="P15880" />
<edge source="Q00839" target="P22626" />
<edge source="Q00839" target="P35637" />
<edge source="Q00839" target="P42677" />
<edge source="Q00839" target="P62241" />
<edge source="Q00839" target="Q5SSJ5" />
<edge source="Q00839" target="Q5TBA9" />
<edge source="Q00839" target="Q6P5Z2" />
<edge source="Q00839" target="Q16666" />
<edge source="Q00839" target="Q9NUL3" />
<edge source="Q00839" target="Q9NUQ6" />
<edge source="Q02790" target="O95433" />
<edge source="Q02790" target="P00533" />
<edge source="Q02790" target="P04792" />
<edge source="Q02790" target="P31948" />
<edge source="Q02790" target="Q15185" />
<edge source="Q02790" target="Q9HB71" />
<edge source="Q02790" target="Q9UHD1" />
<edge source="Q02790" target="Q9Y2Z0" />
<edge source="Q02790" target="Q16666" />
<edge source="Q9Y6Q9" target="P60484" />
<edge source="O14980" target="P04792" />
<edge source="P04792" target="O43491" />
<edge source="P04792" target="O95817" />
<edge source="P04792" target="P00533" />
<edge source="P04792" target="P02511" />
<edge source="P04792" target="P22626" />
<edge source="P04792" target="P34932" />
<edge source="P04792" target="P51114" />
<edge source="P04792" target="Q14240" />
<edge source="P04792" target="Q15185" />
<edge source="P04792" target="Q7Z3B3" />
<edge source="P04792" target="Q9H0M0" />
<edge source="O15075" target="O75044" />
<edge source="O15075" target="Q15678" />
<edge source="O15075" target="Q8TEH3" />
<edge source="O75044" target="Q15154" />
<edge source="O75044" target="Q15678" />
<edge source="O75044" target="Q8TEH3" />
<edge source="Q15678" target="Q8TEH3" />
<edge source="O15162" target="P00533" />
<edge source="O15162" target="Q05516" />
<edge source="P00533" target="O95433" />
<edge source="P00533" target="P04406" />
<edge source="P00533" target="P05362" />
<edge source="P00533" target="P06396" />
<edge source="P00533" target="P07355" />
<edge source="P00533" target="P0DP23" />
<edge source="P00533" target="P10809" />
<edge source="P00533" target="P14625" />
<edge source="P00533" target="P31689" />
<edge source="P00533" target="P31948" />
<edge source="P00533" target="P34932" />
<edge source="P00533" target="P35637" />
<edge source="P00533" target="P46934" />
<edge source="P00533" target="P49908" />
<edge source="P00533" target="P60880" />
<edge source="P00533" target="Q01650" />
<edge source="P00533" target="Q07157" />
<edge source="P00533" target="Q13480" />
<edge source="P00533" target="Q13905" />
<edge source="P00533" target="Q9NZM3" />
<edge source="P00533" target="Q15165" />
<edge source="Q05516" target="Q9HCM3" />
<edge source="Q05516" target="Q9NYJ8" />
<edge source="O43491" target="P42568" />
<edge source="P42568" target="P51825" />
<edge source="O60493" target="O75970" />
<edge source="O60493" target="P28290" />
<edge source="Q15154" target="O95714" />
<edge source="Q15154" target="P63167" />
<edge source="Q15154" target="P28290" />
<edge source="Q15154" target="Q5VT06" />
<edge source="Q15154" target="Q8WXW3" />
<edge source="O75190" target="O95817" />
<edge source="O75190" target="P31948" />
<edge source="O75190" target="P42336" />
<edge source="O95817" target="P00441" />
<edge source="O95817" target="P02511" />
<edge source="O95817" target="P0DMV8" />
<edge source="P31948" target="Q04771" />
<edge source="O75293" target="Q9UFF9" />
<edge source="Q9UFF9" target="P62324" />
<edge source="Q9UFF9" target="Q9HB71" />
<edge source="O75956" target="P01023" />
<edge source="P01023" target="P04406" />
<edge source="P01023" target="P05090" />
<edge source="P01023" target="P10809" />
<edge source="P26951" target="Q9H334" />
<edge source="P26951" target="Q9NXK6" />
<edge source="O95425" target="P04406" />
<edge source="P04406" target="P00441" />
<edge source="P04406" target="Q14469" />
<edge source="P04406" target="Q96Q15" />
<edge source="P04406" target="Q9NXU5" />
<edge source="O95433" target="Q9UHD1" />
<edge source="Q9UHD1" target="Q13464" />
<edge source="O95714" target="P31689" />
<edge source="O95714" target="P63092" />
<edge source="P31689" target="Q9NYJ8" />
<edge source="O95757" target="Q16666" />
<edge source="O95810" target="P07355" />
<edge source="P00441" target="P00338" />
<edge source="P00441" target="P10809" />
<edge source="P00441" target="P14625" />
<edge source="P00441" target="P20962" />
<edge source="P00441" target="P34932" />
<edge source="P00441" target="P37802" />
<edge source="P00441" target="P50454" />
<edge source="P10809" target="P49789" />
<edge source="P10809" target="P49792" />
<edge source="P10809" target="Q6NVY1" />
<edge source="P14625" target="Q96Q15" />
<edge source="P14625" target="Q9HD67" />
<edge source="P34932" target="Q9NX09" />
<edge source="P05362" target="P0CG48" />
<edge source="P05362" target="Q92572" />
<edge source="P35637" target="P15880" />
<edge source="P35637" target="P22626" />
<edge source="P35637" target="P42677" />
<edge source="P35637" target="P51114" />
<edge source="P35637" target="P62241" />
<edge source="P46934" target="P0CG48" />
<edge source="P46934" target="P60484" />
<edge source="Q07157" target="Q9GZV5" />
<edge source="Q13480" target="Q9HBL0" />
<edge source="Q13905" target="Q9NUQ6" />
<edge source="Q9NZM3" target="Q9HCM3" />
<edge source="P01130" target="P62079" />
<edge source="P62079" target="P50895" />
<edge source="P62079" target="Q8NG11" />
<edge source="P62079" target="Q96QD8" />
<edge source="P62079" target="Q9BRX8" />
<edge source="P62079" target="Q9H3E2" />
<edge source="Q96Q15" target="Q14240" />
<edge source="P04439" target="P10321" />
<edge source="P10321" target="P15907" />
<edge source="P10321" target="Q9BRX8" />
<edge source="P22626" target="P98179" />
<edge source="Q9H0M0" target="P0CG48" />
<edge source="Q9H0M0" target="Q96BY9" />
<edge source="P0CG48" target="P60896" />
<edge source="P0CG48" target="Q9NX09" />
<edge source="P0CG48" target="Q9NYJ8" />
<edge source="P0CG48" target="Q9UNQ0" />
<edge source="P0CG48" target="Q9Y4E8" />
<edge source="P22694" target="P63167" />
<edge source="P22694" target="Q13627" />
<edge source="Q5SSJ5" target="Q16666" />
<edge source="Q5SSJ5" target="Q7Z2W4" />
<edge source="Q9HB71" target="Q16666" />
<edge source="Q9HB71" target="Q9Y2Z0" />
<edge source="Q9NYJ8" target="P42677" />
<edge source="Q13464" target="P46531" />
<edge source="Q13464" target="P60484" />
<edge source="P60896" target="Q9Y244" />
<edge source="P60896" target="Q9Y4E8" />
<edge source="Q9Y4E8" target="P41134" />
<edge source="Q9Y4E8" target="P46531" />
<edge source="Q9Y4E8" target="Q9HBH9" />
<edge source="P60484" target="Q92831" />
<edge source="P63167" target="Q13627" />
<edge source="P63167" target="Q14149" />
<edge source="P63167" target="Q6P1L5" />
<edge source="P63167" target="Q86W92" />
<edge source="Q99576" target="Q7Z417" />
<edge source="Q99576" target="Q6P1L5" />
<edge source="P15880" target="Q9NUL3" />
<edge source="P20839" target="Q6ZNC4" />
<edge source="P22105" target="Q8N9N5" />
<edge source="Q8N9N5" target="Q6P1L5" />
<edge source="Q13627" target="P46531" />
<edge source="Q13627" target="Q6P1L5" />
<edge source="Q9H334" target="P56545" />
<edge source="P30825" target="Q09328" />
<edge source="P62241" target="Q7Z2W4" />
<edge source="P37235" target="Q99685" />
<edge source="P42167" target="Q10589" />
<edge source="P46531" target="P49368" />
<edge source="P46531" target="Q16666" />
<edge source="P46531" target="Q9GZV5" />
<edge source="P46531" target="Q8N8A2" />
<edge source="P49368" target="P48643" />
<edge source="P49368" target="P50991" />
<edge source="Q16666" target="Q7Z417" />
<edge source="P50895" target="Q8NG11" />
<edge source="P51003" target="Q14011" />
<edge source="P56545" target="Q9UIF8" />
<edge source="Q92831" target="Q9Y5W3" />
<edge source="Q04724" target="Q07817" />
<edge source="Q96PU8" target="Q9NWB1" />
<edge source="Q9UKF7" target="Q9UBN6" />
</graph>
</graphml>
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
<?xml version='1.0' encoding='utf-8'?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
<key id="d4" for="node" attr.name="pval_adj" attr.type="double" />
<key id="d3" for="node" attr.name="pval" attr.type="double" />
<key id="d2" for="node" attr.name="logfoldchanges" attr.type="double" />
<key id="d1" for="node" attr.name="gene_symbol" attr.type="string" />
<key id="d0" for="node" attr.name="gene_id" attr.type="double" />
<graph edgedefault="undirected">
<node id="O15162">
<data key="d0">5359.0</data>
<data key="d1">PLSCR1</data>
<data key="d2">-1.5170913</data>
<data key="d3">4.136487309516697e-06</data>
<data key="d4">0.0032419719288337</data>
</node>
<node id="Q05516">
<data key="d0">7704.0</data>
<data key="d1">ZBTB16</data>
<data key="d2">0.97660965</data>
<data key="d3">1.5630948959328988e-08</data>
<data key="d4">2.5942777934556905e-05</data>
</node>
<node id="O43524">
<data key="d0">2309.0</data>
<data key="d1">FOXO3</data>
<data key="d2">0.8544231</data>
<data key="d3">1.617127040075925e-05</data>
<data key="d4">0.007893088224653</data>
</node>
<node id="Q04917">
<data key="d0">7533.0</data>
<data key="d1">YWHAH</data>
<data key="d2">1.3005087</data>
<data key="d3">0.0001830922727457</data>
<data key="d4">0.0474637104104914</data>
</node>
<node id="O75112">
<data key="d0">11155.0</data>
<data key="d1">LDB3</data>
<data key="d2">1.5193521</data>
<data key="d3">4.95323736045884e-05</data>
<data key="d4">0.0181500768993956</data>
</node>
<node id="P0DMV8">
<data key="d0">3304.0</data>
<data key="d1">HSPA1B</data>
<data key="d2">1.9751459</data>
<data key="d3">1.293792057365848e-07</data>
<data key="d4">0.0001738302042789</data>
</node>
<node id="P61586">
<data key="d0">387.0</data>
<data key="d1">RHOA</data>
<data key="d2">0.7855196</data>
<data key="d3">0.0001640082051415</data>
<data key="d4">0.0440713476958808</data>
</node>
<node id="O94875">
<data key="d0">8470.0</data>
<data key="d1">SORBS2</data>
<data key="d2">0.82707316</data>
<data key="d3">1.6243543107902054e-06</data>
<data key="d4">0.0015803847199636</data>
</node>
<node id="Q8WX93">
<data key="d0">23022.0</data>
<data key="d1">PALLD</data>
<data key="d2">0.8585271</data>
<data key="d3">0.0001984645181788</data>
<data key="d4">0.0495546582337743</data>
</node>
<node id="P02511">
<data key="d0">1410.0</data>
<data key="d1">CRYAB</data>
<data key="d2">1.5257127</data>
<data key="d3">8.710331282157682e-10</data>
<data key="d4">1.7554428366148503e-06</data>
</node>
<node id="P04792">
<data key="d0">3315.0</data>
<data key="d1">HSPB1</data>
<data key="d2">1.8847187</data>
<data key="d3">1.905079425515209e-24</data>
<data key="d4">5.375181599091162e-20</data>
</node>
<node id="P07900">
<data key="d0">3320.0</data>
<data key="d1">HSP90AA1</data>
<data key="d2">1.1101086</data>
<data key="d3">2.7611934434650644e-13</data>
<data key="d4">1.1129581858195254e-09</data>
</node>
<node id="P08238">
<data key="d0">3326.0</data>
<data key="d1">HSP90AB1</data>
<data key="d2">0.86155623</data>
<data key="d3">2.5669080707434486e-06</data>
<data key="d4">0.0023363003618073</data>
</node>
<node id="P08670">
<data key="d0">7431.0</data>
<data key="d1">VIM</data>
<data key="d2">1.1177812</data>
<data key="d3">8.111714376110418e-09</data>
<data key="d4">1.4304501320122216e-05</data>
</node>
<node id="P13693">
<data key="d0">7178.0</data>
<data key="d1">TPT1</data>
<data key="d2">0.80236536</data>
<data key="d3">0.0001618386637882</data>
<data key="d4">0.0439065182575621</data>
</node>
<node id="P54253">
<data key="d0">6310.0</data>
<data key="d1">ATXN1</data>
<data key="d2">0.712304</data>
<data key="d3">3.498666958075107e-05</data>
<data key="d4">0.0141021268888698</data>
</node>
<node id="Q15185">
<data key="d0">10728.0</data>
<data key="d1">PTGES3</data>
<data key="d2">0.8664793</data>
<data key="d3">3.1435963398396926e-05</data>
<data key="d4">0.0128545754679096</data>
</node>
<node id="Q7Z3B3">
<data key="d0">284058.0</data>
<data key="d1">KANSL1</data>
<data key="d2">0.63409</data>
<data key="d3">0.0001879955043219</data>
<data key="d4">0.0482208468585705</data>
</node>
<node id="Q86TI0">
<data key="d0">23216.0</data>
<data key="d1">TBC1D1</data>
<data key="d2">0.81891215</data>
<data key="d3">1.1024565709885718e-05</data>
<data key="d4">0.0062211624300885</data>
</node>
<node id="Q15303">
<data key="d0">2066.0</data>
<data key="d1">ERBB4</data>
<data key="d2">1.1079869</data>
<data key="d3">0.0001496004136413</data>
<data key="d4">0.0429268010255183</data>
</node>
<node id="P09619">
<data key="d0">5159.0</data>
<data key="d1">PDGFRB</data>
<data key="d2">-0.37845042</data>
<data key="d3">0.0001948203671026</data>
<data key="d4">0.0491749611715363</data>
</node>
<node id="P63092">
<data key="d0">2778.0</data>
<data key="d1">GNAS</data>
<data key="d2">0.93212223</data>
<data key="d3">5.991879271728181e-07</data>
<data key="d4">0.00065023412943</data>
</node>
<node id="Q92598">
<data key="d0">10808.0</data>
<data key="d1">HSPH1</data>
<data key="d2">1.6761034</data>
<data key="d3">1.3386021284377312e-05</data>
<data key="d4">0.0070970556189187</data>
</node>
<node id="P60484">
<data key="d0">5728.0</data>
<data key="d1">PTEN</data>
<data key="d2">-0.7821016</data>
<data key="d3">9.017273639072147e-12</data>
<data key="d4">2.8269152858491187e-08</data>
</node>
<node id="P50914">
<data key="d0">9045.0</data>
<data key="d1">RPL14</data>
<data key="d2">1.1112844</data>
<data key="d3">0.0001743281174792</data>
<data key="d4">0.0464025267422449</data>
</node>
<node id="P17676">
<data key="d0">1051.0</data>
<data key="d1">CEBPB</data>
<data key="d2">1.105564</data>
<data key="d3">9.147367736274876e-06</data>
<data key="d4">0.0054913400144467</data>
</node>
<node id="P49716">
<data key="d0">1052.0</data>
<data key="d1">CEBPD</data>
<data key="d2">0.70893383</data>
<data key="d3">0.00011939636024</data>
<data key="d4">0.0374307589352667</data>
</node>
<node id="Q09666">
<data key="d0">79026.0</data>
<data key="d1">AHNAK</data>
<data key="d2">0.9890392</data>
<data key="d3">0.0001952009800181</data>
<data key="d4">0.0491749611715363</data>
</node>
<node id="P52943">
<data key="d0">1397.0</data>
<data key="d1">CRIP2</data>
<data key="d2">1.1283969</data>
<data key="d3">0.0001614398720355</data>
<data key="d4">0.0439065182575621</data>
</node>
<node id="Q14011">
<data key="d0">1153.0</data>
<data key="d1">CIRBP</data>
<data key="d2">-1.4958272</data>
<data key="d3">1.421239807941426e-06</data>
<data key="d4">0.0014321528993238</data>
</node>
<node id="Q92609">
<data key="d0">9779.0</data>
<data key="d1">TBC1D5</data>
<data key="d2">0.71140087</data>
<data key="d3">0.0001521417721974</data>
<data key="d4">0.0429268010255183</data>
</node>
<node id="Q9Y2K2">
<data key="d0">23387.0</data>
<data key="d1">SIK3</data>
<data key="d2">-0.36437201</data>
<data key="d3">0.0001010830301025</data>
<data key="d4">0.0327822723487829</data>
</node>
<node id="Q05707">
<data key="d0">7373.0</data>
<data key="d1">COL14A1</data>
<data key="d2">1.4476955</data>
<data key="d3">3.5898440231553435e-05</data>
<data key="d4">0.0142115606231421</data>
</node>
<node id="P51888">
<data key="d0">5549.0</data>
<data key="d1">PRELP</data>
<data key="d2">1.1246282</data>
<data key="d3">4.5809686471760224e-10</data>
<data key="d4">1.0993314842938347e-06</data>
</node>
<node id="Q7Z6G8">
<data key="d0">56899.0</data>
<data key="d1">ANKS1B</data>
<data key="d2">0.9782406</data>
<data key="d3">2.711834689109385e-05</data>
<data key="d4">0.0115930932959426</data>
</node>
<node id="Q96LR5">
<data key="d0">7325.0</data>
<data key="d1">UBE2E2</data>
<data key="d2">0.69574136</data>
<data key="d3">0.0001307920488912</data>
<data key="d4">0.0388452385206928</data>
</node>
<node id="Q9UKF7">
<data key="d0">26207.0</data>
<data key="d1">PITPNC1</data>
<data key="d2">-1.588356</data>
<data key="d3">6.574882752792545e-22</data>
<data key="d4">9.275515843502085e-18</data>
</node>
<edge source="O15162" target="Q05516" />
<edge source="O43524" target="Q04917" />
<edge source="Q04917" target="P04792" />
<edge source="Q04917" target="P54253" />
<edge source="Q04917" target="Q86TI0" />
<edge source="Q04917" target="Q9Y2K2" />
<edge source="Q04917" target="Q9UKF7" />
<edge source="O75112" target="P0DMV8" />
<edge source="O75112" target="P61586" />
<edge source="P0DMV8" target="P54253" />
<edge source="P61586" target="Q7Z6G8" />
<edge source="O94875" target="Q8WX93" />
<edge source="P02511" target="P04792" />
<edge source="P04792" target="P07900" />
<edge source="P04792" target="P08238" />
<edge source="P04792" target="P08670" />
<edge source="P04792" target="P13693" />
<edge source="P04792" target="P54253" />
<edge source="P04792" target="Q15185" />
<edge source="P04792" target="Q7Z3B3" />
<edge source="P04792" target="Q86TI0" />
<edge source="P07900" target="P08238" />
<edge source="P07900" target="Q15185" />
<edge source="P07900" target="Q15303" />
<edge source="P08238" target="P09619" />
<edge source="P08238" target="P63092" />
<edge source="P08238" target="Q15185" />
<edge source="P08238" target="Q15303" />
<edge source="P08238" target="Q92598" />
<edge source="P13693" target="P50914" />
<edge source="P54253" target="P52943" />
<edge source="P54253" target="Q14011" />
<edge source="P54253" target="Q92609" />
<edge source="Q86TI0" target="Q96LR5" />
<edge source="Q15303" target="Q7Z6G8" />
<edge source="P09619" target="P60484" />
<edge source="P50914" target="Q09666" />
<edge source="P17676" target="P49716" />
<edge source="Q05707" target="P51888" />
</graph>
</graphml>
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment