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S1. Hierarchical clustering dendrograms

From the different distance matrices (obtained from the distinct datasets, type of
vectors and features) and using linkage method “ward”, the following dendrograms
have been generated.

Dendrograms in the case of the complete dataset and binary vectors
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Dendrograms in the case of the complete dataset and numeric vectors
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Supplementary Figure S1. Representation of the dendrograms generated from the complete sets of diseases by
applying hierarchical clustering. We have included both the dendrograms obtained by computing distance matrices
from binary and numeric vectors (and considering each metric and feature).
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Dendrograms in the case of the inner dataset and binary vectors
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Dendrograms in the case of the inner dataset and numeric vectors
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Supplementary figure S2. Representation of the dendrograms generated from the inner set of
diseases by applying hierarchical clustering. We have included both the dendrograms obtained by
computing distance matrices from binary and numeric vectors (and considering each metric and feature).
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S2. Formal distance metrics definitions

The distance between two diseases based on the feature vectors representing them was
computed based on the metrics that are here defined. Distances were calculated
between pair of diseases, represented by A and B, which are the feature vectors
associated to each of the diseases. The vectors were formed of j features, from 1 to N.
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Minkowski’s p parameter was set in this paper to 5.
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S3. Distributions of the distance matrices

The different distance distributions accordingly to the distinct dataset, type of vectors,
features and metrics have been represented in the following plots.
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Distance distributions in the case of the complete dataset and binary vectors
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Distance distributions in the case of the complete dataset and numeric vectors
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Supplementary figure S3. Representation of distance distributions between diseases in the
complete datasets. We have included both the distributions of distances obtained from binary and

numeric vectors (and considering each metric and feature).
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Distance distributions in the case of the inner dataset and binary vectors
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Supplementary figure S4. Representation of distance distributions between diseases in the inner
dataset. We have included both the distributions of distances obtained from binary and numeric vectors

(and considering each metric and feature).

Pub I. SM. 5



S4. Formal evaluation metrics definitions

To evaluate the clustering results obtained, different internal evaluation metrics were
considered. They are described hereunder. They all refer to the computed global value
for model (taking into account all the instances).

The notation used will be the same for the different metrics. For dataset, X, of N diseases,
supposing X is partitioned into K clusters, C = {c1, ¢2, ..., ck}, and represented as vectors
in an F-dimensional space: X = {Xi, X2, ..., Xx}c RF. The centroid of a cluster cx is its
mean vector, ¢, = 1/ |ck| Xy, e ¢, Xi @nd, likewise, the centroid of the dataset is the mean
vector of the whole dataset, X = 1/N 2x; € x Xi- The distance between two points x4 and
X2, computed by whatever metric, is denoted as d(x1, x2).

Silhouette coefficient

The Silhouette coefficient is defined for each sample and is composed of two scores,
shown below. Higher values of this metric are related to a model with better defined
clusters.

For each disease x; € X, a(x; ) is calculated as the average distance between o and all
other objects in the cluster to which o belongs. Similarly, b(x; ) is the minimum average
distance from o to all clusters to which o does not belong. Formally, a(x;,c;) =
Yx;ec; A(xi,xj) Yx;ec; A(xi,xj)
j €L J ) — . j€Cl J
-1 and b c) clre”é(‘ck{ el }

That is, a is the mean distance between a sample and all other points in the same class,
measuring the closeness of points in the same cluster, whereas b is the mean distance
between a sample and all other points in the next nearest cluster, measuring the distance
of points to different clusters.

b(xi,cx)—alxi.ck)
max {a(x;,ck), b(xi.ck)y
the Silhouette coefficient of the whole model is computed as S(C) = 1/

N ZCkECinECk S(xi,Ck).

Calinski-Harabasz index

The Silhouette coefficient of x; is then defined as s(x;, ¢, ) = while

CH index is a ratio-type index where the cohesion is estimated based on the distances
from the points in a cluster to its centroid. The separation is based on the distance from
the centroids to the global centroid. This metric is computed as follows: CH(C) =
N-K Zcgeclexld(cy . X)

K=1 Y ecXxec, A(xi i)

Davies-Bouldin index

DB index estimates the cohesion based on the distance from the points in a cluster to its
centroid and the separation based on the distance between centroids. It is defined as

1 S +S —
follows: DB(C) = + X ec max {%} where S(c,) = 1/lci | Zn e cp d(xi, ).
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