Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Sign in
Toggle navigation
C
covid_analysis
Project overview
Project overview
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
COMPARA
covid_analysis
Commits
3b07abab
Commit
3b07abab
authored
May 21, 2024
by
Joaquin Torres
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
script ready for shap vals computation
parent
36a3534e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
3 deletions
+11
-3
explicability/shap_vals.py
explicability/shap_vals.py
+11
-3
No files found.
explicability/shap_vals.py
View file @
3b07abab
...
...
@@ -86,11 +86,13 @@ if __name__ == "__main__":
"post_OVER"
:
(
None
,
None
),
"post_UNDER"
:
(
None
,
None
),
}
# # Retrieve attribute names in order
# df = pd.read_csv("..\gen_train_data\data\input\pre_dataset.csv")
# attribute_names = list(df.columns.values)
# --------------------------------------------------------------------------------------------------------
# Shap value generation
# --------------------------------------------------------------------------------------------------------
shap_values
=
{}
# Mapping group-method -> shap values
for
i
,
group
in
enumerate
([
'pre'
,
'post'
]):
# Get test dataset based on group
X_test
=
data_dic
[
'X_test_'
+
group
]
...
...
@@ -105,8 +107,14 @@ if __name__ == "__main__":
is_tree
=
model_info
[
0
]
model
=
model_info
[
1
]
# Fit model with training data
fitted_model
=
model
.
fit
(
X_train
,
y_train
)
# [:500]?
fitted_model
=
model
.
fit
(
X_train
[:
500
],
y_train
[:
500
])
# Check if we are dealing with a tree vs nn model
if
is_tree
:
explainer
=
shap
.
TreeExplainer
(
fitted_model
,
X_test
)
# [:500]?
explainer
=
shap
.
TreeExplainer
(
fitted_model
,
X_test
[:
500
])
else
:
explainer
=
shap
.
KernelExplainer
(
fitted_model
.
predict
,
X_test
[:
500
])
# Compute shap values
shap_vals
=
explainer
.
shap_values
(
X_test
[:
500
],
check_additivity
=
False
)
# Change to true for final results
# Save results
np
.
save
(
f
"shap_values/{group}_{method_names[j]}"
,
shap_vals
)
# --------------------------------------------------------------------------------------------------------
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment