Commit cc955ffb authored by Joaquin Torres's avatar Joaquin Torres

Completed commments

parent 28db5fbd
# Testing Tuned Models
# Author: Joaquín Torres Bravo
"""
Evaluating optimized models with test data
"""
# Libraries
# --------------------------------------------------------------------------------------------------------
# Basics
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Models
from xgboost import XGBClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score, make_scorer, precision_score, recall_score, accuracy_score, roc_auc_score, average_precision_score
from sklearn.ensemble import RandomForestClassifier, BaggingClassifier, AdaBoostClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
# Metrics
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score, make_scorer, precision_score, recall_score, accuracy_score, roc_auc_score, average_precision_score
from sklearn.metrics import RocCurveDisplay, roc_curve
from sklearn.metrics import PrecisionRecallDisplay, precision_recall_curve
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
# Misc
import ast # String to dictionary
import seaborn as sns
from mpl_toolkits.axes_grid1 import make_axes_locatable
from mpl_toolkits.axes_grid1 import make_axes_locatable # Custom color bar for confusion matrices
# --------------------------------------------------------------------------------------------------------
# Reading data
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment