Commit 40f48ac2 authored by Laura Masa's avatar Laura Masa

Reorganizing files and directories

parent 70a81af3
cui disease_name gene_id drug_id symptom_id Genes in LCC
C0001206 Acromegaly 178.0 3.0 18.0 38.0
C0001973 Alcoholic Intoxication, Chronic 1008.0 22.0 34.0 249.0
C0002395 Alzheimer's Disease 5736.0 38.0 7.0 2697.0
C0002622 Amnesia 200.0 41.0 14.0 74.0
C0002736 Amyotrophic Lateral Sclerosis 1791.0 11.0 23.0 847.0
C0003467 Anxiety 1335.0 0.0 16.0 684.0
C0003537 Aphasia 94.0 3.0 8.0 27.0
C0004135 Ataxia Telangiectasia 481.0 0.0 24.0 235.0
C0004352 Autistic Disorder 1710.0 35.0 5.0 706.0
C0005586 Bipolar Disorder 2040.0 78.0 12.0 727.0
C0007282 Carotid Stenosis 163.0 2.0 3.0 23.0
C0007766 Intracranial Aneurysm 399.0 5.0 13.0 124.0
C0007785 Cerebral Infarction 891.0 15.0 32.0 444.0
C0007786 Brain Ischemia 449.0 48.0 4.0 236.0
C0007787 Transient Ischemic Attack 410.0 17.0 14.0 233.0
C0007789 Cerebral Palsy 284.0 5.0 31.0 81.0
C0007959 Charcot-Marie-Tooth Disease 349.0 1.0 19.0 96.0
C0009171 Cocaine Abuse 182.0 97.0 16.0 57.0
C0009207 Cockayne Syndrome 133.0 0.0 7.0 46.0
C0009952 Febrile Convulsions 267.0 8.0 9.0 30.0
C0010964 Dandy-Walker Syndrome 155.0 0.0 9.0 53.0
C0011195 Dejerine-Sottas Disease (disorder) 235.0 0.0 22.0 60.0
C0011206 Delirium 152.0 23.0 18.0 15.0
C0011265 Presenile dementia 944.0 38.0 23.0 467.0
C0011269 Dementia, Vascular 268.0 2.0 26.0 103.0
C0011570 Mental Depression 2208.0 0.0 7.0 1047.0
C0011581 Depressive disorder 2544.0 112.0 5.0 1266.0
C0011633 Dermatomyositis 296.0 8.0 18.0 80.0
C0013080 Down Syndrome 1066.0 1.0 3.0 511.0
C0013264 Muscular Dystrophy, Duchenne 467.0 3.0 10.0 196.0
C0013362 Dysarthria 531.0 7.0 10.0 260.0
C0013384 Dyskinetic syndrome 400.0 31.0 26.0 145.0
C0014038 Encephalitis 406.0 8.0 37.0 148.0
C0014057 Japanese Encephalitis 142.0 0.0 21.0 50.0
C0014060 Encephalitis, St. Louis 330.0 0.0 13.0 124.0
C0014065 Congenital cerebral hernia 101.0 0.0 4.0 43.0
C0014070 Encephalomyelitis 1062.0 0.0 32.0 578.0
C0014544 Epilepsy 1727.0 48.0 19.0 828.0
C0014553 Absence Epilepsy 131.0 15.0 11.0 28.0
C0014556 Epilepsy, Temporal Lobe 470.0 11.0 14.0 181.0
C0015469 Facial paralysis 186.0 1.0 12.0 25.0
C0016667 Fragile X Syndrome 255.0 1.0 6.0 86.0
C0016719 Friedreich Ataxia 111.0 4.0 12.0 22.0
C0017205 Gaucher Disease 183.0 2.0 17.0 35.0
C0017921 Glycogen storage disease type II 243.0 0.0 12.0 44.0
C0018378 Guillain-Barre Syndrome 194.0 0.0 44.0 58.0
C0018524 Hallucinations 192.0 30.0 10.0 83.0
C0018784 Sensorineural Hearing Loss (disorder) 989.0 6.0 5.0 432.0
C0019202 Hepatolenticular Degeneration 200.0 9.0 21.0 43.0
C0019562 Von Hippel-Lindau Syndrome 240.0 0.0 4.0 91.0
C0020179 Huntington Disease 1345.0 11.0 16.0 677.0
C0020255 Hydrocephalus 555.0 3.0 15.0 267.0
C0022336 Creutzfeldt-Jakob disease 180.0 0.0 24.0 53.0
C0023264 Leigh Disease 285.0 0.0 18.0 70.0
C0023524 Leukoencephalopathy, Progressive Multifocal 263.0 1.0 6.0 152.0
C0024266 Lymphocytic Choriomeningitis 159.0 0.0 22.0 47.0
C0024408 Machado-Joseph Disease 171.0 0.0 14.0 66.0
C0024809 Marijuana Abuse 209.0 0.0 13.0 52.0
C0024814 Marinesco-Sjogren syndrome 167.0 1.0 15.0 62.0
C0025286 Meningioma 929.0 2.0 14.0 460.0
C0025289 Meningitis 225.0 20.0 42.0 79.0
C0025958 Microcephaly 1360.0 0.0 10.0 824.0
C0026106 Mild Mental Retardation 374.0 0.0 2.0 120.0
C0026654 Moyamoya Disease 151.0 2.0 13.0 16.0
C0026769 Multiple Sclerosis 2878.0 21.0 28.0 1284.0
C0026847 Spinal Muscular Atrophy 440.0 0.0 17.0 194.0
C0026850 Muscular Dystrophy 453.0 1.0 33.0 124.0
C0026896 Myasthenia Gravis 447.0 17.0 11.0 133.0
C0027121 Myositis 301.0 4.0 24.0 109.0
C0027126 Myotonic Dystrophy 204.0 3.0 8.0 72.0
C0027809 Neurilemmoma 259.0 2.0 13.0 120.0
C0027830 neurofibroma 157.0 0.0 12.0 65.0
C0027831 Neurofibromatosis 1 433.0 0.0 15.0 183.0
C0027832 Neurofibromatosis 2 160.0 0.0 12.0 82.0
C0027859 Acoustic Neuroma 159.0 0.0 11.0 74.0
C0027873 Neuromyelitis Optica 214.0 1.0 25.0 30.0
C0028043 Nicotine Dependence 227.0 13.0 8.0 38.0
C0028077 Night Blindness 201.0 1.0 15.0 16.0
C0028738 Nystagmus 923.0 10.0 12.0 551.0
C0029124 Optic Atrophy 648.0 0.0 15.0 335.0
C0030567 Parkinson Disease 3240.0 47.0 32.0 1582.0
C0032000 Pituitary Adenoma 211.0 7.0 15.0 88.0
C0033375 Prolactinoma 243.0 5.0 11.0 87.0
C0035258 Restless Legs Syndrome 174.0 17.0 28.0 28.0
C0035372 Rett Syndrome 299.0 0.0 25.0 105.0
C0036341 Schizophrenia 5398.0 71.0 18.0 2171.0
C0037773 Spastic Paraplegia, Hereditary 209.0 0.0 7.0 41.0
C0038220 Status Epilepticus 664.0 41.0 23.0 294.0
C0038379 Strabismus 771.0 1.0 4.0 501.0
C0038436 Post-Traumatic Stress Disorder 528.0 23.0 8.0 200.0
C0038525 Subarachnoid Hemorrhage 659.0 14.0 14.0 342.0
C0038868 Progressive supranuclear palsy 237.0 1.0 19.0 92.0
C0039483 Giant Cell Arteritis 327.0 5.0 15.0 123.0
C0040517 Gilles de la Tourette syndrome 232.0 17.0 11.0 37.0
C0041341 Tuberous Sclerosis 378.0 4.0 18.0 159.0
C0042170 Uveomeningoencephalitic Syndrome 124.0 5.0 14.0 15.0
C0043124 West Nile Fever 89.0 1.0 25.0 18.0
C0043459 Zellweger Syndrome 81.0 0.0 5.0 22.0
C0080178 Spina Bifida 233.0 1.0 12.0 59.0
C0085084 Motor Neuron Disease 270.0 3.0 35.0 118.0
C0085655 Polymyositis 226.0 7.0 10.0 41.0
C0085762 Alcohol abuse 226.0 22.0 29.0 47.0
C0086769 Panic Attacks 63.0 27.0 23.0 20.0
C0149940 Sciatic Neuropathy 121.0 2.0 7.0 44.0
C0151311 Cranial nerve palsies 81.0 2.0 29.0 26.0
C0151740 Intracranial Hypertension 72.0 12.0 14.0 27.0
C0152020 Gastroparesis 102.0 4.0 24.0 17.0
C0152025 Polyneuropathy 192.0 6.0 14.0 45.0
C0153633 Malignant neoplasm of brain 330.0 22.0 36.0 161.0
C0162309 Adrenoleukodystrophy 368.0 0.0 12.0 119.0
C0162635 Angelman Syndrome 149.0 0.0 17.0 44.0
C0162666 Mitochondrial Encephalomyopathies 60.0 1.0 15.0 19.0
C0175754 Agenesis of corpus callosum 767.0 0.0 3.0 417.0
C0206728 Plexiform Neurofibroma 56.0 1.0 13.0 20.0
C0220756 Niemann-Pick Disease, Type C 230.0 1.0 19.0 119.0
C0221056 Adult type dermatomyositis 256.0 8.0 18.0 67.0
C0221406 Pituitary-dependent Cushing's disease 164.0 3.0 11.0 37.0
C0234144 Dysgraphia 43.0 0.0 9.0 22.0
C0236642 Pick Disease of the Brain 289.0 1.0 9.0 137.0
C0238190 Inclusion Body Myositis (disorder) 101.0 1.0 11.0 35.0
C0238288 Muscular Dystrophy, Facioscapulohumeral 187.0 0.0 14.0 48.0
C0242350 Erectile dysfunction 322.0 35.0 2.0 72.0
C0265219 Miller Dieker syndrome 221.0 0.0 20.0 99.0
C0266463 Lissencephaly 98.0 0.0 15.0 30.0
C0266464 Polymicrogyria 239.0 0.0 2.0 109.0
C0266483 Pachygyria 156.0 0.0 15.0 39.0
C0270824 Visual seizure 235.0 216.0 25.0 53.0
C0270972 Cornelia De Lange Syndrome 78.0 0.0 10.0 22.0
C0271270 Oculovestibuloauditory syndrome 95.0 0.0 13.0 33.0
C0276226 Herpes encephalitis 68.0 2.0 2.0 16.0
C0276496 Familial Alzheimer Disease (FAD) 336.0 38.0 7.0 165.0
C0282527 Infantile Refsum Disease (disorder) 37.0 0.0 2.0 15.0
C0338451 Frontotemporal dementia 464.0 4.0 9.0 203.0
C0338508 Optic Atrophy, Autosomal Dominant 161.0 0.0 16.0 59.0
C0349204 Nonorganic psychosis 528.0 0.0 9.0 184.0
C0410189 Muscular Dystrophy, Emery-Dreifuss 76.0 0.0 7.0 15.0
C0410207 Tubular Aggregate Myopathy 78.0 0.0 14.0 31.0
C0431380 Cortical Dysplasia 139.0 2.0 6.0 31.0
C0494463 Alzheimer Disease, Late Onset 529.0 38.0 7.0 241.0
C0496899 Benign neoplasm of brain, unspecified 42.0 22.0 23.0 18.0
C0497327 Dementia 1153.0 16.0 28.0 522.0
C0520679 Sleep Apnea, Obstructive 610.0 4.0 26.0 249.0
C0543859 Amyotrophic Lateral Sclerosis, Guam Form 40.0 11.0 26.0 19.0
C0546126 Acute Confusional Senile Dementia 100.0 38.0 7.0 48.0
C0577631 Carotid Atherosclerosis 263.0 2.0 9.0 75.0
C0600427 Cocaine Dependence 300.0 97.0 16.0 65.0
C0740391 Middle Cerebral Artery Occlusion 766.0 15.0 7.0 404.0
C0740392 Infarction, Middle Cerebral Artery 160.0 15.0 7.0 62.0
C0750900 Alzheimer's Disease, Focal Onset 100.0 38.0 7.0 48.0
C0750901 Alzheimer Disease, Early Onset 207.0 38.0 7.0 95.0
C0750974 Brain Tumor, Primary 137.0 22.0 16.0 64.0
C0750977 Recurrent Brain Neoplasm 39.0 22.0 16.0 18.0
C0750979 Primary malignant neoplasm of brain 42.0 22.0 16.0 20.0
C0751265 Learning Disabilities 114.0 38.0 7.0 25.0
C0751587 CADASIL Syndrome 53.0 0.0 7.0 16.0
C0751690 Malignant Peripheral Nerve Sheath Tumor 332.0 0.0 9.0 172.0
C0751713 Inclusion Body Myopathy, Sporadic 93.0 1.0 11.0 38.0
C0751772 REM Sleep Behavior Disorder 60.0 4.0 13.0 17.0
C0751781 Dentatorubral-Pallidoluysian Atrophy 123.0 3.0 18.0 37.0
C0751967 Multiple Sclerosis, Relapsing-Remitting 249.0 7.0 3.0 61.0
C0752120 Spinocerebellar Ataxia Type 1 126.0 2.0 13.0 33.0
C0752125 Spinocerebellar Ataxia Type 7 94.0 2.0 13.0 28.0
C0752166 Bardet-Biedl Syndrome 176.0 0.0 10.0 27.0
C0752304 Hypoxic-Ischemic Encephalopathy 197.0 2.0 1.0 62.0
C0752347 Lewy Body Disease 335.0 3.0 32.0 145.0
C0917798 Cerebral Ischemia 121.0 48.0 4.0 49.0
C0917816 Mental deficiency 150.0 2.0 1.0 27.0
C1263846 Attention deficit hyperactivity disorder 1084.0 30.0 14.0 484.0
C1269683 Major Depressive Disorder 1814.0 56.0 19.0 775.0
C1306214 ACTH-Secreting Pituitary Adenoma 88.0 0.0 3.0 23.0
C1510586 Autism Spectrum Disorders 1478.0 0.0 9.0 699.0
C1839259 Bulbo-Spinal Atrophy, X-Linked 144.0 0.0 13.0 70.0
C1868675 PARKINSON DISEASE 2, AUTOSOMAL RECESSIVE JUVENILE 89.0 37.0 2.0 27.0
C1955869 Malformations of Cortical Development 80.0 2.0 6.0 26.0
C2931689 Dystrophia myotonica 2 144.0 3.0 18.0 21.0
C3658299 Zellweger Spectrum 35.0 0.0 5.0 17.0
cui disease_name gene_id drug_id symptom_id Genes in LCC
C0002395 Alzheimer's Disease 5736.0 38.0 7.0 2697.0
C0036341 Schizophrenia 5398.0 71.0 18.0 2171.0
C0030567 Parkinson Disease 3240.0 47.0 32.0 1582.0
C0026769 Multiple Sclerosis 2878.0 21.0 28.0 1284.0
C0011581 Depressive disorder 2544.0 112.0 5.0 1266.0
C0011570 Mental Depression 2208.0 0.0 7.0 1047.0
C0005586 Bipolar Disorder 2040.0 78.0 12.0 727.0
C1269683 Major Depressive Disorder 1814.0 56.0 19.0 775.0
C0002736 Amyotrophic Lateral Sclerosis 1791.0 11.0 23.0 847.0
C0014544 Epilepsy 1727.0 48.0 19.0 828.0
disease_id,gds_id
C0221056,GDS3417
C0221056,GDS2153
C0221056,GDS2855
C0221056,GDS1956
C0038436,GDS1020
C0032000,GDS2432
C0032000,GDS1253
C0013264,GDS2855
C0013264,GDS1956
C0013264,GDS612
C0013264,GDS611
C0013264,GDS610
C0013264,GDS609
C0013264,GDS563
C0013264,GDS270
C0013264,GDS265
C0013264,GDS264
C0013264,GDS262
C0013264,GDS214
C0035372,GDS2613
C0080178,GDS2470
C0027121,GDS2153
C0037773,GDS1956
C0033375,GDS1253
C0410189,GDS2855
C0410189,GDS1956
C0496899,GDS4470
C0496899,GDS5181
C0496899,GDS3069
C0496899,GDS2374
C0496899,GDS2432
C0496899,GDS1962
C0496899,GDS1816
C0496899,GDS1815
C0496899,GDS1976
C0496899,GDS1975
C0496899,GDS2853
C0496899,GDS1253
C0496899,GDS232
C1306214,GDS1253
C0750979,GDS4470
C0750979,GDS5181
C0750979,GDS3069
C0750979,GDS2374
C0750979,GDS2432
C0750979,GDS1962
C0750979,GDS1816
C0750979,GDS1815
C0750979,GDS1976
C0750979,GDS1975
C0750979,GDS2853
C0750979,GDS1253
C0750979,GDS232
C0085655,GDS2153
C0085084,GDS4353
C0085084,GDS3644
C0085084,GDS2855
C0085084,GDS1956
C0085084,GDS412
C0750974,GDS4470
C0750974,GDS5181
C0750974,GDS3069
C0750974,GDS2374
C0750974,GDS2432
C0750974,GDS1962
C0750974,GDS1816
C0750974,GDS1815
C0750974,GDS1976
C0750974,GDS1975
C0750974,GDS2853
C0750974,GDS1253
C0750974,GDS232
C0497327,GDS2763
C0497327,GDS2795
C0238288,GDS2855
C0238288,GDS1956
C0014070,GDS4152
C0028043,GDS2447
C0221406,GDS2374
C0038868,GDS2519
C0026850,GDS2855
C0026850,GDS1956
C0026850,GDS612
C0026850,GDS611
C0026850,GDS610
C0026850,GDS609
C0026850,GDS563
C0026850,GDS270
C0026850,GDS265
C0026850,GDS264
C0026850,GDS262
C0026850,GDS214
C0013384,GDS4541
C0013384,GDS2519
C0013384,GDS1912
C0013384,GDS1726
C0013384,GDS1331
C0151311,GDS2519
C0151311,GDS1112
C0751265,GDS1917
C0020179,GDS4541
C0020179,GDS1331
C0011570,GDS2447
C0002736,GDS1956
C0002736,GDS412
C0002395,GDS4136
C0002395,GDS4135
C0002395,GDS4128
C0002395,GDS2519
C0002395,GDS2795
C0002395,GDS810
C0014038,GDS4218
C0014038,GDS1726
C0001973,GDS5430
C0001973,GDS2447
C0001973,GDS2191
C0001973,GDS2190
C0750900,GDS4136
C0750900,GDS4135
C0750900,GDS4128
C0750900,GDS2519
C0750900,GDS2795
C0750900,GDS810
C0004352,GDS4431
C0085762,GDS2191
C0085762,GDS2190
C0024809,GDS2447
C0349204,GDS2779
C1868675,GDS5646
C1868675,GDS4154
C1868675,GDS2821
C1868675,GDS2519
C1868675,GDS1912
C0003467,GDS4152
C0003467,GDS4012
C0003467,GDS2978
C0014544,GDS1962
C0014544,GDS1051
C0014544,GDS1050
C0546126,GDS4136
C0546126,GDS4135
C0546126,GDS4128
C0546126,GDS2519
C0546126,GDS2795
C0546126,GDS810
C0025286,GDS2865
C0007789,GDS4353
C0007789,GDS3644
C0011195,GDS1956
C0543859,GDS1956
C0543859,GDS412
C0030567,GDS5646
C0030567,GDS4154
C0030567,GDS2821
C0030567,GDS2519
C0001206,GDS2432
C0751967,GDS4150
C0751967,GDS2419
C0276496,GDS4136
C0276496,GDS4135
C0276496,GDS4128
C0276496,GDS2519
C0276496,GDS2795
C0276496,GDS810
C0162666,GDS1065
C0026769,GDS4218
C0026769,GDS3920
C0026769,GDS4152
C0026769,GDS4150
C0026769,GDS2978
C0026769,GDS2419
C0270824,GDS4854
C0270824,GDS3110
C0270824,GDS968
C0750901,GDS4136
C0750901,GDS4135
C0750901,GDS4128
C0750901,GDS2519
C0750901,GDS2795
C0750901,GDS810
C0002622,GDS2795
C0011633,GDS3417
C0011633,GDS2153
C0011633,GDS2855
C0011633,GDS1956
C0011581,GDS2447
C0041341,GDS3281
C0036341,GDS4522
C0036341,GDS4523
C0036341,GDS1917
C0751690,GDS2736
C0005586,GDS2779
C0005586,GDS2191
C0005586,GDS2190
C0917816,GDS2613
C0750977,GDS4470
C0750977,GDS5181
C0750977,GDS3069
C0750977,GDS2374
C0750977,GDS2432
C0750977,GDS1962
C0750977,GDS1816
C0750977,GDS1815
C0750977,GDS1976
C0750977,GDS1975
C0750977,GDS2853
C0750977,GDS1253
C0750977,GDS232
C0494463,GDS4136
C0494463,GDS4135
C0494463,GDS4128
C0494463,GDS2519
C0494463,GDS2795
C0494463,GDS810
gds_id,gpl_id
GDS1050,GPL96
GDS4136,GPL570
GDS4150,GPL570
GDS563,GPL8300
GDS5430,GPL570
GDS4541,GPL96
GDS612,GPL95
GDS2978,GPL96
GDS2190,GPL96
GDS1112,GPL8300
GDS232,GPL74
GDS2613,GPL8300
GDS214,GPL246
GDS2447,GPL1426
GDS3281,GPL96
GDS1962,GPL570
GDS1816,GPL97
GDS2519,GPL96
GDS2763,GPL96
GDS1815,GPL96
GDS1975,GPL96
GDS3920,GPL570
GDS2432,GPL570
GDS2795,GPL570
GDS265,GPL95
GDS2853,GPL8300
GDS610,GPL93
GDS264,GPL94
GDS1912,GPL201
GDS4353,GPL571
GDS2855,GPL97
GDS1253,GPL96
GDS1956,GPL96
GDS5646,GPL10558
GDS3417,GPL96
GDS3069,GPL96
GDS1726,GPL8300
GDS4523,GPL570
GDS611,GPL94
GDS270,GPL92
GDS5181,GPL4133
GDS2419,GPL4191
GDS4128,GPL570
GDS2191,GPL96
GDS2470,GPL570
GDS2374,GPL570
GDS3644,GPL96
GDS2821,GPL570
GDS1051,GPL97
GDS4012,GPL10526
GDS968,GPL8300
GDS2779,GPL570
GDS2736,GPL96
GDS1065,GPL96
GDS3110,GPL96
GDS1020,GPL91
GDS2865,GPL96
GDS810,GPL96
GDS1976,GPL97
GDS4135,GPL570
GDS1331,GPL96
GDS609,GPL92
GDS4431,GPL570
GDS4470,GPL570
GDS2153,GPL96
GDS4154,GPL571
GDS1917,GPL570
GDS4152,GPL570
GDS4854,GPL570
GDS4218,GPL570
GDS412,GPL80
GDS4522,GPL570
GDS262,GPL91
disease_id,gds_id
C0221056,GDS4841
C0221056,GDS3417
C0221056,GDS2153
C0221056,GDS2855
C0221056,GDS1956
C0038436,GDS4879
C0038436,GDS1020
C0032000,GDS2432
C0032000,GDS1253
C0520679,GDS4857
C0013080,GDS5211
C0013080,GDS2941
C0016667,GDS2824
C0162309,GDS4559
C0162309,GDS4451
C0338451,GDS3459
C0013264,GDS3027
C0013264,GDS2855
C0013264,GDS1956
C0013264,GDS612
C0013264,GDS611
C0013264,GDS610
C0013264,GDS609
C0013264,GDS563
C0013264,GDS270
C0013264,GDS265
C0013264,GDS264
C0013264,GDS262
C0013264,GDS214
C0035372,GDS2613
C0080178,GDS2470
C0027121,GDS4841
C0027121,GDS2153
C0037773,GDS1956
C0033375,GDS4859
C0033375,GDS1253
C0009171,GDS5047
C0410189,GDS2855
C0410189,GDS1956
C0496899,GDS4838
C0496899,GDS4464
C0496899,GDS4469
C0496899,GDS4470
C0496899,GDS4471
C0496899,GDS4473
C0496899,GDS4859
C0496899,GDS4477
C0496899,GDS5181
C0496899,GDS3952
C0496899,GDS4275
C0496899,GDS3069
C0496899,GDS2374
C0496899,GDS2432
C0496899,GDS1962
C0496899,GDS1816
C0496899,GDS1815
C0496899,GDS1976
C0496899,GDS1975
C0496899,GDS1813
C0496899,GDS2853
C0496899,GDS1253
C0496899,GDS232
C1306214,GDS1253
C0750979,GDS4838
C0750979,GDS4464
C0750979,GDS4469
C0750979,GDS4470
C0750979,GDS4471
C0750979,GDS4473
C0750979,GDS4859
C0750979,GDS4477
C0750979,GDS5181
C0750979,GDS3952
C0750979,GDS4275
C0750979,GDS3069
C0750979,GDS2374
C0750979,GDS2432
C0750979,GDS1962
C0750979,GDS1816
C0750979,GDS1815
C0750979,GDS1976
C0750979,GDS1975
C0750979,GDS1813
C0750979,GDS2853
C0750979,GDS1253
C0750979,GDS232
C0085655,GDS4841
C0085655,GDS2153
C0085084,GDS4353
C0085084,GDS3644
C0085084,GDS2855
C0085084,GDS1956
C0085084,GDS412
C0750974,GDS4838
C0750974,GDS4464
C0750974,GDS4469
C0750974,GDS4470
C0750974,GDS4471
C0750974,GDS4473
C0750974,GDS4859
C0750974,GDS4477
C0750974,GDS5181
C0750974,GDS3952
C0750974,GDS4275
C0750974,GDS3069
C0750974,GDS2374
C0750974,GDS2432
C0750974,GDS1962
C0750974,GDS1816
C0750974,GDS1815
C0750974,GDS1976
C0750974,GDS1975
C0750974,GDS1813
C0750974,GDS2853
C0750974,GDS1253
C0750974,GDS232
C0497327,GDS4758
C0497327,GDS4358
C0497327,GDS3459
C0497327,GDS2763
C0497327,GDS2795
C0238288,GDS4404
C0238288,GDS2855
C0238288,GDS1956
C0014070,GDS4152
C0025289,GDS3540
C0025289,GDS1563
C0017921,GDS4410
C0017921,GDS4409
C0028043,GDS2447
C0221406,GDS2374
C0038868,GDS2519
C0026850,GDS4843
C0026850,GDS4404
C0026850,GDS3475
C0026850,GDS3474
C0026850,GDS3027
C0026850,GDS2855
C0026850,GDS1956
C0026850,GDS612
C0026850,GDS611
C0026850,GDS610
C0026850,GDS609
C0026850,GDS563
C0026850,GDS270
C0026850,GDS265
C0026850,GDS264
C0026850,GDS262
C0026850,GDS214
C0013384,GDS5242
C0013384,GDS4314
C0013384,GDS4541
C0013384,GDS2887
C0013384,GDS2519
C0013384,GDS1912
C0013384,GDS1726
C0013384,GDS1331
C0013384,GDS1330
C0013384,GDS1332
C0013384,GDS1235
C0276226,GDS4540
C0276226,GDS4539
C0024266,GDS4161
C0151311,GDS4224
C0151311,GDS2519
C0151311,GDS1112
C0751265,GDS1917
C0020179,GDS4541
C0020179,GDS2887
C0020179,GDS1331
C0020179,GDS1332
C0011570,GDS4879
C0011570,GDS3345
C0011570,GDS3268
C0011570,GDS2447
C0002736,GDS1956
C0002736,GDS412
C0002395,GDS4758
C0002395,GDS4141
C0002395,GDS4136
C0002395,GDS4135
C0002395,GDS4128
C0002395,GDS2519
C0002395,GDS2601
C0002395,GDS2795
C0002395,GDS810
C0014038,GDS4358
C0014038,GDS4218
C0014038,GDS4540
C0014038,GDS4539
C0014038,GDS1726
C0001973,GDS5430
C0001973,GDS4879
C0001973,GDS2447
C0001973,GDS2191
C0001973,GDS2190
C0750900,GDS4758
C0750900,GDS4141
C0750900,GDS4136
C0750900,GDS4135
C0750900,GDS4128
C0750900,GDS2519
C0750900,GDS2601
C0750900,GDS2795
C0750900,GDS810
C0004352,GDS4431
C0004352,GDS2824
C0085762,GDS2191
C0085762,GDS2190
C1510586,GDS2824
C0024809,GDS2447
C0349204,GDS2779
C2931689,GDS5276
C1868675,GDS5646
C1868675,GDS4141
C1868675,GDS4154
C1868675,GDS3129
C1868675,GDS3128
C1868675,GDS2821
C1868675,GDS2519
C1868675,GDS1912
C0003467,GDS4838
C0003467,GDS4464
C0003467,GDS4559
C0003467,GDS4296
C0003467,GDS4152
C0003467,GDS3886
C0003467,GDS4012
C0003467,GDS2978
C0003467,GDS1960
C0014544,GDS3864
C0014544,GDS1962
C0014544,GDS1051
C0014544,GDS1050
C0546126,GDS4758
C0546126,GDS4141
C0546126,GDS4136
C0546126,GDS4135
C0546126,GDS4128
C0546126,GDS2519
C0546126,GDS2601
C0546126,GDS2795
C0546126,GDS810
C0025286,GDS2865
C0238190,GDS4841
C0007789,GDS4353
C0007789,GDS3644
C0011195,GDS1956
C0543859,GDS1956
C0543859,GDS412
C0030567,GDS5646
C0030567,GDS4141
C0030567,GDS4154
C0030567,GDS3129
C0030567,GDS3128
C0030567,GDS2821
C0030567,GDS2519
C0001206,GDS2432
C0751967,GDS4150
C0751967,GDS4147
C0751967,GDS2419
C0007766,GDS3903
C0276496,GDS4758
C0276496,GDS4141
C0276496,GDS4136
C0276496,GDS4135
C0276496,GDS4128
C0276496,GDS2519
C0276496,GDS2601
C0276496,GDS2795
C0276496,GDS810
C0162666,GDS1065
C0026769,GDS4218
C0026769,GDS3920
C0026769,GDS4152
C0026769,GDS3886
C0026769,GDS4150
C0026769,GDS4147
C0026769,GDS2978
C0026769,GDS2419
C0270824,GDS4854
C0270824,GDS4279
C0270824,GDS3085
C0270824,GDS3110
C0270824,GDS1563
C0270824,GDS913
C0270824,GDS968
C0750901,GDS4758
C0750901,GDS4141
C0750901,GDS4136
C0750901,GDS4135
C0750901,GDS4128
C0750901,GDS2519
C0750901,GDS2601
C0750901,GDS2795
C0750901,GDS810
C0002622,GDS2795
C0011269,GDS4758
C0011633,GDS4841
C0011633,GDS3417
C0011633,GDS2153
C0011633,GDS2855
C0011633,GDS1956
C0011581,GDS4879
C0011581,GDS3345
C0011581,GDS3268
C0011581,GDS2447
C0041341,GDS3281
C0036341,GDS4522
C0036341,GDS3938
C0036341,GDS4523
C0036341,GDS3502
C0036341,GDS3345
C0036341,GDS1917
C0027126,GDS5276
C0751690,GDS2736
C0751713,GDS4841
C0005586,GDS4837
C0005586,GDS3502
C0005586,GDS3345
C0005586,GDS2779
C0005586,GDS2191
C0005586,GDS2190
C0917816,GDS5211
C0917816,GDS4559
C0917816,GDS4451
C0917816,GDS3830
C0917816,GDS2941
C0917816,GDS2824
C0917816,GDS2613
C0750977,GDS4838
C0750977,GDS4464
C0750977,GDS4469
C0750977,GDS4470
C0750977,GDS4471
C0750977,GDS4473
C0750977,GDS4859
C0750977,GDS4477
C0750977,GDS5181
C0750977,GDS3952
C0750977,GDS4275
C0750977,GDS3069
C0750977,GDS2374
C0750977,GDS2432
C0750977,GDS1962
C0750977,GDS1816
C0750977,GDS1815
C0750977,GDS1976
C0750977,GDS1975
C0750977,GDS1813
C0750977,GDS2853
C0750977,GDS1253
C0750977,GDS232
C0494463,GDS4758
C0494463,GDS4141
C0494463,GDS4136
C0494463,GDS4135
C0494463,GDS4128
C0494463,GDS2519
C0494463,GDS2601
C0494463,GDS2795
C0494463,GDS810
This source diff could not be displayed because it is too large. You can view the blob instead.
{
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"id": "41a9395c-0e12-4e7a-85b8-1eac4f02870d",
"metadata": {},
"outputs": [],
"source": [
"from Bio import Entrez\n",
"import GEOparse\n",
"import pandas as pd\n",
"import os\n",
"import preprocess_functions\n",
"import insert_tables\n",
"import mysql.connector\n",
"from mysql.connector import errorcode"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "34bc052f-3e52-4a26-8946-0c12a9317bde",
"metadata": {},
"outputs": [],
"source": [
"gpl_path=\"/home/lmasa/GEO_Laura/data/gpl\""
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4981165e-a2bf-462b-8b1d-8573872e930b",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"06-Jul-2024 13:30:43 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL94.annot: \n",
"06-Jul-2024 13:30:43 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:43 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL571.annot: \n",
"06-Jul-2024 13:30:43 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:43 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL570.annot: \n",
"06-Jul-2024 13:30:43 DEBUG GEOparse - ANNOTATION: \n",
"/home/lmasa/miniconda3/lib/python3.12/site-packages/GEOparse/GEOparse.py:401: DtypeWarning: Columns (12) have mixed types. Specify dtype option on import or set low_memory=False.\n",
" return read_csv(StringIO(data), index_col=None, sep=\"\\t\")\n",
"06-Jul-2024 13:30:43 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL93.annot: \n",
"06-Jul-2024 13:30:43 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:44 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL96.annot: \n",
"06-Jul-2024 13:30:44 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:44 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL1426.annot: \n",
"06-Jul-2024 13:30:44 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:44 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL201.annot: \n",
"06-Jul-2024 13:30:44 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:44 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL8300.annot: \n",
"06-Jul-2024 13:30:44 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:44 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL4191.annot: \n",
"06-Jul-2024 13:30:44 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:44 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL97.annot: \n",
"06-Jul-2024 13:30:44 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:44 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL10526.annot: \n",
"06-Jul-2024 13:30:44 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:45 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL92.annot: \n",
"06-Jul-2024 13:30:45 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:45 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL95.annot: \n",
"06-Jul-2024 13:30:45 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:45 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL74.annot: \n",
"06-Jul-2024 13:30:45 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:45 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL4133.annot: \n",
"06-Jul-2024 13:30:45 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:45 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL80.annot: \n",
"06-Jul-2024 13:30:45 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:45 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL10558.annot: \n",
"06-Jul-2024 13:30:46 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:46 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL91.annot: \n",
"06-Jul-2024 13:30:46 DEBUG GEOparse - ANNOTATION: \n",
"06-Jul-2024 13:30:46 INFO GEOparse - Parsing /home/lmasa/GEO_Laura/data/gpl/GPL246.annot: \n",
"06-Jul-2024 13:30:46 DEBUG GEOparse - ANNOTATION: \n"
]
}
],
"source": [
"gpl_data=preprocess_functions.fetch_gpl_annot(gpl_path)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "23f1d834-caeb-4f0e-a28c-95d258f8ea53",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>gpl_id</th>\n",
" <th>gpl_title</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>GPL94</td>\n",
" <td>[HG_U95D] Affymetrix Human Genome U95D Array</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>GPL571</td>\n",
" <td>[HG-U133A_2] Affymetrix Human Genome U133A 2.0...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>GPL570</td>\n",
" <td>[HG-U133_Plus_2] Affymetrix Human Genome U133 ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>GPL93</td>\n",
" <td>[HG_U95C] Affymetrix Human Genome U95C Array</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>GPL96</td>\n",
" <td>[HG-U133A] Affymetrix Human Genome U133A Array</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" gpl_id gpl_title\n",
"0 GPL94 [HG_U95D] Affymetrix Human Genome U95D Array\n",
"1 GPL571 [HG-U133A_2] Affymetrix Human Genome U133A 2.0...\n",
"2 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 ...\n",
"3 GPL93 [HG_U95C] Affymetrix Human Genome U95C Array\n",
"4 GPL96 [HG-U133A] Affymetrix Human Genome U133A Array"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gpl_data.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6389c1a1-c443-4774-bd9d-0fb65af45bee",
"metadata": {},
"outputs": [],
"source": [
"##Insert GPL data into database"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d5785dba-71d0-4269-9ae7-b1968b8e9a19",
"metadata": {},
"outputs": [],
"source": [
"#The connection details needed to insert data into the database\n",
"host = \"{host}\" # Host where the MySQL server is located. Example: 'localhost' or '127.0.0.1'\n",
"user = \"{user_name}\" # Username for accessing the MySQL database. Example: 'root' or 'my_user'\n",
"password = \"{password}\" # Password for the MySQL user. Ensure to use a secure password for database access.\n",
"database = \"{database}\" # Name of the database to connect to. Example: 'disnet_biolayer'\n",
"port = \"{port}\" # Port number for the MySQL server. Default is 3306, but it may vary depending on the setup."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "b823d154-7c31-4aee-80b1-89bb933edb58",
"metadata": {},
"outputs": [],
"source": [
"# Initialize the connection variable to None\n",
"conn = None\n",
"\n",
"try:\n",
" # Attempt to establish a connection to the MySQL database\n",
" conn = mysql.connector.connect(\n",
" host=host,\n",
" user=user,\n",
" password=password,\n",
" database=database,\n",
" port=port\n",
" )\n",
" # Insert GPL data into the database\n",
" insert_tables.insert_gpl_main(conn, df)\n",
"\n",
"# Handle any MySQL errors that occur during the connection or insertion process\n",
"except mysql.connector.Error as err:\n",
" print(f\"Error connecting to MySQL: {err}\")\n",
"\n",
"# Ensure the connection is closed properly even if an error occurs\n",
"finally:\n",
" if conn and conn.is_connected():\n",
" conn.close()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
This diff is collapsed.
import requests
from Bio import Entrez
import GEOparse
import os
import gzip
import shutil
import pandas as pd
from os.path import join
from collections import defaultdict
import numpy as np
def fetch_gds_data(gds_path):
"""
Fetches and processes Gene Expression Omnibus (GEO) GDS data files from the specified directory.
This function iterates through GDS files in the given directory, extracts gene expression data, annotations,
and metadata for each file, and consolidates this information into three dataframes.
Input Parameters:
gds_path (str): The path to the directory containing GDS files.
Returns:
tuple: A tuple containing three pandas DataFrames:
- expression_df: DataFrame with gene expression data.
- annotation_df: DataFrame with annotation data.
- metadata_df: DataFrame with metadata about the GDS files.
"""
expression_dfs = []
annotation_dfs = []
metadata_rows = []
for filename in os.listdir(gds_path):
if not filename.startswith("GDS") or not filename.endswith(".soft"):
continue
filepath = os.path.join(gds_path, filename)
gds = GEOparse.get_GEO(filepath=filepath)
value_types = gds.metadata.get('value_type', [])
if 'count' not in value_types:
continue
#Collect metadata
metadata_rows.append({
'gds_id': gds.name,
'gds_title': gds.metadata.get('title', [None])[0],
'gds_type': gds.metadata.get('type', [None])[0],
'gpl_id': gds.metadata.get('platform', [None])[0],
'channel_count': gds.metadata.get('channel_count', [None])[0],
'value_type': value_types[0]
})
#Extract gene expression data
gsm_columns = [col for col in gds.table.columns if col.startswith("GSM")]
non_gsm_columns = [col for col in gds.table.columns if not col.startswith("GSM")]
melted_df = pd.melt(
gds.table,
id_vars=non_gsm_columns,
value_vars=gsm_columns,
var_name='gsm_id',
value_name='value'
)
melted_df.dropna(subset=['IDENTIFIER', 'value'], inplace=True)
melted_df.rename(columns={'ID_REF': 'id_ref', 'IDENTIFIER': 'gene_symbol'}, inplace=True)
melted_df['gds_id'] = gds.name
#Extract annotation data
gds_annot = gds.columns.reset_index().drop(columns=['description'])
gds_annot['gds_id'] = gds.name
#Collect expression data for expression_df
expression_dfs.append(melted_df)
#Collect annotation data for annotation_df
annotation_dfs.append(gds_annot)
#Combine all expression and annotation dataframes
expression_df = pd.concat(expression_dfs, ignore_index=True)
annotation_df = pd.concat(annotation_dfs, ignore_index=True)
rename_dict = {
'index': 'gsm_id',
'disease state': 'disease_state',
'cell type': 'cell_type',
'development stage': 'development_stage',
'genotype/variation': 'genotype'
}
annotation_df.rename(columns={k: v for k, v in rename_dict.items() if k in annotation_df.columns}, inplace=True)
metadata_df = pd.DataFrame(metadata_rows)
return expression_df, annotation_df, metadata_df
# =================================================================================
def fetch_gpl_annot(gpl_path):
"""
Fetch GPL data from files in the specified directory.
Input Parameters:
gpl_path (str): The directory path where the GPL annotation files are stored.
Returns:
pd.DataFrame: A dataframe containing GPL annotation data.
Columns are 'gpl_id' and 'gpl_title'.
"""
data_rows = []
for filename in os.listdir(gpl_path):
if filename.startswith("GPL") and filename.endswith(".annot"):
filepath = os.path.join(gpl_path, filename)
gpl = GEOparse.get_GEO(filepath=filepath)
#Collect GPL (platform) data
data_rows.append({
'gpl_id': gpl.name,
'gpl_title': gpl.metadata.get('platform_title', [None])[0]
})
gpl_data = pd.DataFrame(data_rows)
return gpl_data
# =================================================================================
def process_disease_state(df, fill_value=''):
"""
Processes the 'disease_state' column in the given DataFrame.
This function fills missing values in the DataFrame, then categorizes the 'disease_state' column into
two categories: 'c' for control/normal/healthy states and 'd' for diseased states.
Input Parameters:
df (pandas.DataFrame): The input DataFrame containing a 'disease_state' column.
fill_value (str, optional): The value to use for filling missing values in the DataFrame. Default is an empty string.
Returns:
pandas.DataFrame: A new DataFrame with the processed 'disease_state' column.
"""
#Fill missing values and create a copy of the DataFrame
new_dataframe = df.fillna(fill_value).copy()
#Create a mask for control/normal/healthy states using case-insensitive matching
mask_control = new_dataframe['disease_state'].str.lower().str.contains('|'.join(['control', 'normal', 'healthy', 'not diseased', 'wild-type']))
#Assign 'c' to control/normal/healthy states
new_dataframe.loc[mask_control, 'disease_state'] = 'c'
#Assign 'd' to diseased states
new_dataframe.loc[~mask_control, 'disease_state'] = 'd'
return new_dataframe
# =================================================================================
def extract_cuis(apikey,dataframe, column_name):
"""
Extracts CUIs (Concept Unique Identifiers) for terms in a specified column of a DataFrame.
This function interacts with the UMLS API to fetch CUIs for unique terms found in the specified column of the input DataFrame.
Input Parameters:
dataframe (pandas.DataFrame): The input DataFrame containing the terms.
column_name (str): The name of the column in the DataFrame containing the terms for which CUIs need to be extracted.
Returns:
dict: A dictionary mapping terms to their respective CUIs.
"""
#UMLS API key and settings
apikey = apikey
version = 'current'
uri = "https://uts-ws.nlm.nih.gov"
content_endpoint = "/rest/search/" + version
full_url = uri + content_endpoint
search_type = 'exact'
#Get the different terms from the specified column, removing NaNs and empty strings
list_different = set(dataframe[column_name].dropna())
list_different = {item for item in list_different if item.strip()}
different_cuis = {}
#Fetch CUIs for each different term
for item in list_different:
page = 0
while True:
page += 1
query = {
'string': item,
'apiKey': apikey,
'pageNumber': page,
'searchType': search_type
}
r = requests.get(full_url, params=query)
r.raise_for_status()
r.encoding = 'utf-8'
outputs = r.json()
items = ((outputs.get('result', {})).get('results', []))
if len(items) == 0:
if page == 1:
break
else:
break
for result in items:
cui = result['ui']
different_cuis[item] = cui
return different_cuis
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment