Fixed nan issues.

parent 89a50f63
...@@ -24,7 +24,7 @@ numeric_variables = ["DMRAGEYR","DMXHT","DMXWT","DMXBMI","DATLGT","DATLGTI","DAT ...@@ -24,7 +24,7 @@ numeric_variables = ["DMRAGEYR","DMXHT","DMXWT","DMXBMI","DATLGT","DATLGTI","DAT
def numeric_conversion(datafile): def numeric_conversion(datafile):
#datafile = pd.read_csv(datafile_path, csv_separator) #datafile = pd.read_csv(datafile_path, ",")
convert_col = [x for x in datafile.columns if x in categorical_variables] convert_col = [x for x in datafile.columns if x in categorical_variables]
...@@ -44,14 +44,14 @@ def numeric_conversion(datafile): ...@@ -44,14 +44,14 @@ def numeric_conversion(datafile):
for col in verify_num_col: for col in verify_num_col:
datafile[col] = [float(x) if not math.isnan(x) else None if x =="nan" else None for x in datafile[col]] datafile[col] = [float(x) if str(x) =="nan" else None for x in datafile[col]]
verify_cat_col = [x for x in datafile.columns if x in categorical_variables] verify_cat_col = [x for x in datafile.columns if x in categorical_variables]
for col in verify_cat_col: for col in verify_cat_col:
datafile[col] = [str(x) if not math.isnan(x) else None for x in datafile[col]] datafile[col] = [str(x) if str(x) =="nan" else None for x in datafile[col]]
#new_datafile_path = datafile_path.replace(".csv", "_numeric.csv") #new_datafile_path = datafile_path.replace(".csv", "_numeric.csv")
#datafile.to_csv(new_datafile_path, index = False, quoting=csv.QUOTE_NONNUMERIC) #datafile.to_csv(new_datafile_path, index = False, quoting=csv.QUOTE_NONNUMERIC)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment